دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Wenhao Dai
سری:
ISBN (شابک) : 9781498746083, 9780429190476
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: 297
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Stress Physiology of Woody Plants به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیولوژی تنش گیاهان چوبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گیاهان چوبی عادات رشد و نمو مشخصی دارند. گیاهان چوبی از آنجایی که گونههای بیپاسخ و چندساله هستند، در طول سال با تنشهای متعدد مواجه میشوند یا در طول زندگی خود با حملات استرس مکرر مواجه میشوند. چالش تنش در یک فصل ممکن است بر عملکرد گیاه در فصول یا سال های دیگر تأثیر بگذارد. بنابراین، گیاهان چوبی باید مکانیسم های خاصی را برای به حداقل رساندن آسیب ناشی از تنش های مختلف ایجاد کنند. اگرچه همه گونههای گیاهی فرآیند فیزیولوژیکی پایه را به اشتراک میگذارند، ویژگیهای منحصربهفرد گونههای چوبی در ساختار آناتومی، اندازه بدن، عادت رشد و امید به زندگی به تفاوتهای قابلتوجهی در پاسخهای آنها به تنشهای محیطی مختلف در مقایسه با گیاهان علفی کمک میکند. فیزیولوژی استرس گیاهان چوبی که توسط گروهی از متخصصان نوشته شده است، شامل 11 فصل است که به طور عمیق منحصر به فرد بودن ساختار گیاه، رشد و نمو، فتوسنتز و تنفس و تنظیم رشد در گونه های چوبی را توصیف می کند. این یافتهها را در پاسخهای گیاهان چوبی به تنشهای محیطی عمده از جمله خشکی، کمبود عناصر غذایی، شوری، دمای پایین، تنش اکسیداتیو، فلزات سنگین و تنشهای متعدد خلاصه میکند. ویژگی ها: بررسی جامعی از جنبه های فیزیولوژیکی و مولکولی گیاهان چوبی که به برخی از تنش های محیطی عمده پاسخ می دهند ارائه می دهد. شکاف بین گونه های چوبی و علفی را در زمینه فیزیولوژی عمومی و فیزیولوژی استرس پر می کند. منحصر به فرد بودن گیاهان چوبی را در ساختار گیاه، رشد و نمو، فتوسنتز و تنفس و تنظیم رشد توصیف می کند. پاسخ های فیزیولوژیکی و مولکولی به تنش های محیطی در گیاهان چوبی را خلاصه می کند. این کتاب به عنوان کتاب درسی و مرجع اصلی دانشجویان و محققین فیزیولوژی گیاهی، باغبانی، جنگلداری و زیست شناسی مولکولی گیاهی است و درک بهتری از مکانیسم های واکنش گیاه به تنش های فردی یا ترکیبی در گونه های چوبی را آموزش می دهد. یافته ها در پاسخ گیاهان چوبی به تنش های محیطی عمده از جمله خشکی، کمبود عناصر غذایی، شوری، دمای پایین، تنش اکسیداتیو، فلزات سنگین و تنش های متعدد. ویژگی ها: بررسی جامعی از جنبه های فیزیولوژیکی و مولکولی گیاهان چوبی که به برخی از تنش های محیطی عمده پاسخ می دهند ارائه می دهد. شکاف بین گونه های چوبی و علفی را در زمینه فیزیولوژی عمومی و فیزیولوژی استرس پر می کند. منحصر به فرد بودن گیاهان چوبی را در ساختار گیاه، رشد و نمو، فتوسنتز و تنفس و تنظیم رشد توصیف می کند. پاسخ های فیزیولوژیکی و مولکولی به تنش های محیطی در گیاهان چوبی را خلاصه می کند. این کتاب به عنوان کتاب درسی و مرجع اصلی دانشجویان و محققین فیزیولوژی گیاهی، باغبانی، جنگلداری و زیست شناسی مولکولی گیاهی است و درک بهتری از مکانیسم های واکنش گیاه به تنش های فردی یا ترکیبی در گونه های چوبی را آموزش می دهد. e، جنگلداری، و زیستشناسی مولکولی گیاهی و درک بهتر مکانیسمهای پاسخ گیاه به تنشهای فردی یا ترکیبی در گونههای چوبی را آموزش میدهد.
Woody plants have distinct growth and development habits. Being sessile and perennial species, woody plants are challenged by multiple stresses year-round or facing repeated stress attacks during their lives. A stress challenge in one season may impact the plant performance in other seasons or years; therefore, woody plants must develop specific mechanisms to minimize the damage caused by various stresses. Although all plant species share the basic physiological process, the unique characteristics of woody species in anatomy structure, body size, growth habit, and life expectancy contribute to significant differences in their responses to different environmental stresses compared to herbaceous plants. Written by a group of experts, Stress Physiology of Woody Plants, is comprised of 11 chapters profoundly describing the uniqueness of plant structure, growth and development, photosynthesis and respiration, and growth regulation in woody species. It summarizes findings in the responses of woody plants to major environmental stresses including drought, nutrient deficiency, salinity, low temperature, oxidative stress, heavy metal, and multiple stresses. Features: Provides a comprehensive review of physiological and molecular aspects of woody plants responding to some major environmental stresses. Bridges the gap between woody and herbaceous species in the field of general physiology and stress physiology. Describes the uniqueness of woody plants in plant structure, growth and development, photosynthesis and respiration, and growth regulation. Summarizes physiological and molecular responses to the environmental stresses in woody plants. This book serves as a textbook and major reference by students and researchers of plant physiology, horticulture, forestry, and plant molecular biology and teaches a better understanding of the mechanisms of plant response to individual or combined stresses in woody species. findings in the responses of woody plants to major environmental stresses including drought, nutrient deficiency, salinity, low temperature, oxidative stress, heavy metal, and multiple stresses. Features: Provides a comprehensive review of physiological and molecular aspects of woody plants responding to some major environmental stresses. Bridges the gap between woody and herbaceous species in the field of general physiology and stress physiology. Describes the uniqueness of woody plants in plant structure, growth and development, photosynthesis and respiration, and growth regulation. Summarizes physiological and molecular responses to the environmental stresses in woody plants. This book serves as a textbook and major reference by students and researchers of plant physiology, horticulture, forestry, and plant molecular biology and teaches a better understanding of the mechanisms of plant response to individual or combined stresses in woody species. e, forestry, and plant molecular biology and teaches a better understanding of the mechanisms of plant response to individual or combined stresses in woody species.
Cover Half Title Title Page Copyright Page Contents Preface About the Editor Contributors Chapter 1: Woody Plant Structure 1.1 Introduction 1.2 Woody Plant Classifications 1.3 Leaves 1.3.1 Angiosperm Leaves 1.3.2 Gymnosperm Leaves 1.3.3 Epicuticular Waxes 1.4 Stems 1.4.1 Stem Structure and Functions 1.4.2 Secondary Growth in Stems 1.4.3 Suckers vs. Watersprouts 1.4.4 Stem Modifications 1.5 Wood Formation 1.5.1 Xylem Tissue and Function 1.5.2 Xylem: Sapwood and Heartwood 1.5.3 Xylem Water Movement 1.5.4 Rays 1.5.5 Reaction Wood 1.6 Bark 1.7 Roots 1.7.1 Root Development 1.7.1.1 Adventitious Roots 1.7.2 Roots and Soil Organisms 1.8 Flowers 1.8.1 Angiosperm Flowers 1.8.2 Gymnosperm Flowers 1.8.3 Inflorescences 1.8.4 Pollination and Fertilization 1.9 Fruits 1.9.1 Gymnosperm Fruits 1.10 Seed Bibliography Chapter 2: Plant Growth and Development 2.1 Introduction 2.2 Seed Development and Dormancy 2.2.1 The Seed Contains the Embryo 2.2.2 Hormonal Influences on Embryo Development 2.2.3 Seed Maturation 2.2.4 Maintenance and Release of Seed Dormancy 2.2.5 Hormonal Control of Seed Dormancy 2.2.6 Seed Germination 2.2.7 Commercial Methods to Release Seed Dormancy 2.3 Root Growth 2.3.1 Root Structure and Development 2.3.2 Factors Affecting Root Growth and Root System Architecture 2.4 Shoot Growth 2.4.1 Primary Growth of Shoots 2.4.2 Origins and Functions of Shoot Primary Meristems 2.4.3 Secondary Growth of Shoots 2.4.4 Photomorphogenesis 2.4.5 Shoot Resistance to Mechanical Stresses 2.4.6 Bud Outgrowth and Lateral Shoot Growth Determine Canopy Architecture 2.4.7 Hormonal Basis for Apical Dominance and Apical Control 2.4.8 Types of Bud Dormancy and Their Control 2.4.9 Endodormancy and Cold-Acclimation Are Distinct but Overlapping Processes 2.4.10 Ecodormancy Is Imposed by the Environment 2.5 Leaf Growth 2.5.1 Leaf Structure and Development 2.5.2 Leaf Development Responds to the Light Environment 2.5.3 Leaf Senescence and Abscission 2.5.4 Deciduous and Evergreen Leaves Represent Different Strategies 2.6 Flower and Fruit Development 2.6.1 Processes of Floral Initiation and Development 2.6.1.1 Mechanisms of Floral Development 2.6.1.2 Sexual Reproduction 2.6.1.3 Polyploidy and Apomixis 2.6.2 Fruits and Their Development 2.6.2.1 Fruit Set and Fruit Growth 2.6.2.2 Fruit Maturation and Ripening 2.6.2.3 Dispersal Strategies 2.7 Adaptation 2.7.1 Evolution Is a Change in Allele Frequencies 2.7.2 Adaptation Arises Locally 2.7.3 Provenance Trials 2.7.4 Adaptationism 2.7.5 Challenges in the Study of Adaptation 2.7.6 Adaptation in this Book References Chapter 3: Photosynthesis and Respiration in Woody Plants 3.1 Introduction 3.2 Photosynthesis 3.2.1 Photosynthesis Site 3.2.2 Photosynthesis Stages 3.2.2.1 Light Dependent (Light) Reactions 3.2.2.2 Light Independent (Dark) Reactions 3.2.2.3 C4 (Hatch–Slack) and Crassulacean Acid Metabolism (CAM) Pathway 3.2.3 Photosynthesis Rate and Its Influencing Factors in Woody Plants 3.2.3.1 Variations in Photosynthesis Rate 3.2.3.2 Diurnal and Seasonal Variations 3.2.3.3 Environmental Factors Affecting Photosynthesis Rate 3.3 Respiration 3.3.1 Aerobic respiration 3.3.2 Anaerobic Respiration (Fermentation) 3.3.3 Energy Usage 3.3.4 Respiration Regulation at a Whole Plant Level 3.3.5 Respiration Measurement and Rate 3.4 Effects of Environmental Conditions on Respiration 3.4.1 Temperature 3.4.2 Oxygen and Carbon Dioxide 3.4.3 Water 3.5 Unique Features in Woody Plants 3.5.1 Non-Foliar Photosynthesis 3.5.2 Age-Related Changes in Photosynthesis 3.5.3 Winter Photosynthesis in Evergreen Species References Chapter 4: Plant Growth Regulation 4.1 Introduction 4.2 Plant Hormones and Plant Growth Regulators (PGRs) 4.3 Roles of PGRs in Plant Growth and Regulation 4.3.1 Abscisic Acid (ABA) 4.3.2 Auxins 4.3.3 Brassinosteroids 4.3.4 Cytokinins 4.3.5 Ethylene 4.3.6 Gibberellins (GA) 4.3.7 Jasmonic Acid (JA) 4.3.8 MeJA 4.3.9 Salicylic Acid (SA) 4.4 Environmental Regulation of Plant Growth and Development 4.4.1 Light-Mediated Entrainment of Plant Growth and Development 4.4.1.1 Impact of Light Intensity on Plant Growth and Development 4.4.1.2 Impact of Photoperiod on Plant Growth and Development 4.4.1.3 Impact of Spectral Quality on Plant Growth and Development 4.4.1.4 Photoreceptors – Masters Behind Light Perception 4.4.2 Temperature-Mediated Entrainment of Plant Growth and Development 4.4.2.1 Temperature-Mediated Flowering Response 4.4.2.2 Temperature-Mediated Auxin Control 4.5 Role of Plant Growth Regulators during Stress Alleviation of Plants 4.5.1 Salicylic Acid in Stress Alleviation 4.5.2 Jasmonic Acid in Stress Alleviation 4.5.3 Methyl Jasmonate in Stress Alleviation References Chapter 5: Plant Response to Drought Stress 5.1 Introduction 5.1.1 Water Relations of Woody Plants in a Nutshell: Water Transport in Plants 5.1.2 Role of Water in Plant Growth and Development 5.1.3 Water Potential and Stomatal Behavior 5.1.4 Definitions of Drought 5.2 Effect of Drought Stress on Tree Performance 5.2.1 Plastic Morphological Responses 5.2.2 Drought-Induced Mortality 5.3 Plastic Physiological Responses 5.3.1 Maintaining Turgor through Osmotic Adjustment 5.3.2 Stomatal Closure in Response to Various Stimuli 5.3.3 Oxidative Response 5.3.4 Use of Carbon Reserves 5.3.5 Hormonal Changes 5.3.6 Root Adaptation and Mycorrhizae 5.3.7 Whole-Plant Strategies for Drought Tolerance 5.4 Molecular Responses to Water Stress 5.4.1 Proteome Response to Drought Stress 5.4.2 Transcriptome Response to Drought Stress 5.5 Genetic Engineering for Drought Tolerance in Trees 5.5.1 Improving the Oxidative Response 5.5.2 Improvement of Osmotic Status 5.5.3 Manipulation of Drought-Responsive Genes 5.6 Water Stress as an Agricultural Tool 5.6.1 Induction of Flowering 5.6.2 Water Conservation 5.7 Conclusions and Future Directions Acknowledgements References Chapter 6: Plant Response to Mineral Nutrient Deficiency 6.1 Introduction 6.2 Roles of Mineral Nutrients in Plant Growth and Development 6.2.1 Macronutrients 6.2.1.1 Nitrogen (N) 6.2.1.2 Phosphorus (P) 6.2.1.3 Potassium (K) 6.2.1.4 Calcium (Ca) 6.2.1.5 Magnesium (Mg) 6.2.1.6 Sulfur (S) 6.2.2 Micronutrients 6.2.2.1 Iron (Fe) 6.2.2.2 Manganese (Mn) 6.2.2.3 Zinc (Zn) 6.2.2.4 Copper (Cu) 6.2.2.5 Boron (B) 6.2.2.6 Chloride (Cl) 6.2.2.7 Molybdenum (Mo) 6.2.2.8 Nickel (Ni) 6.3 Physiological and Molecular Responses of Woody Plants to Nutrient Deficiency 6.3.1 Physiological Responses to Nutrient Deficiency 6.3.2 Molecular Responses to Nutrient Deficiency 6.3.3 Response to Fe Deficiency in Woody Plants 6.3.3.1 Iron Uptake, Transport, and Metabolism in Plants 6.3.3.2 Iron Availability in the Soil 6.3.3.3 Plant Responses to Iron Deficiency 6.3.3.4 Iron Homeostasis Regulation Genes in Plants 6.4 Management of Mineral Nutrients Deficiency in Woody Plants References Chapter 7: Plant Response to Salinity Stress 7.1 Introduction 7.2 Effects of Salinity and Sodicity on Soil Properties 7.2.1 Chemical Properties 7.2.2 Physical and Hydraulic Properties 7.3 Problems with High Salinity in Woody Plants 7.3.1 Responses of Woody Plants to Salinity Stress 7.3.2 Factors Influencing the Severity of Salinity Stress 7.4 Mechanisms of Salinity Damage 7.4.1 Osmotic Stress 7.4.2 Ion Toxicity and Imbalance 7.4.3 Oxidative Stress 7.5 Mechanisms of Salinity Tolerance 7.5.1 Osmotic Adjustment 7.5.2 Salt Overly Sensitive (SOS) Pathway 7.5.3 Ion Secretion 7.5.4 Tolerance to Oxidative Stress 7.5.5 Dilution 7.6 Molecular Information of Salinity Tolerance References Chapter 8: Plant Response to Low Temperature 8.1 Introduction 8.1.1 Low Temperatures in Plant Life Cycles 8.1.2 Photoperiod, Low Temperature, and Plant Dormancy 8.2 Chilling Requirement and Plant Flowering 8.2.1 Variations of Chilling Requirements in Deciduous Fruit Crops 8.2.2 Chilling-Regulated Flowering in Deciduous Fruit Crops 8.2.3 Primary Dormancy Genes in Deciduous Fruit Crops 8.3 Acclimation, Dormancy, and Freezing Tolerance 8.3.1 The APETALA2/Ethylene Response (AP2/ERF) Transcription Factors 8.3.2 CBF/DREB1 Genes and Plant Freezing Tolerance 8.3.3 Low-Temperature Regulatory Networks 8.4 Potential Roles of Phytohormones in Plant Flowering, Dormancy, and Freezing Tolerance 8.4.1 Phytohormones in Plant Cold Acclimation 8.4.2 Phytohormones in Plant Dormancy 8.4.3 Phytohormones in Plant Flowering 8.5 Conclusion Remarks References Chapter 9: Plant Response to Oxidative Stress 9.1 Introduction 9.2 Major Oxidative Species 9.3 Oxidative Stress Effect on Plant Growth and Development 9.4 Physiological Response to Oxidative Stress 9.5 Molecular Response to Oxidative Stress 9.6 Resistance and Tolerance to Oxidative Stress References Chapter 10: Plants Response to Heavy Metal Stress 10.1 Introduction 10.2 Heavy Metal Toxicity 10.2.1 Physiological and Biochemical Mechanisms of HM Toxicity in Plants 10.2.1.1 Production of Reactive Oxygen Species (ROS) by Autoxidation and Fenton Reaction 10.2.1.2 Blocking of Essential Functional Groups in Biomolecules 10.2.1.3 Composite Mechanism Leading to Membrane Disruption 10.2.2 Effect of an Individual HM on a Plant System 10.2.2.1 Effects of Copper (Cu) on Plants 10.2.2.2 Effects of Mercury (Hg) on Plants 10.2.2.3 Effects of Cadmium (Cd) on Plants 10.2.2.4 Effects of Manganese (Mn) on Plants 10.2.2.5 Effect of Zinc (Zn) on Plants 10.2.2.6 Effects of Cobalt (Co) on Plants 10.3 Heavy Metal Effect on Plant Growth and Development 10.3.1 Effect of HMs on Growth of Root 10.3.2 Effect of HMs on Growth of the Shoot 10.3.3 Effect of HMs on Leaves of Woody Plants 10.3.4 Effect of HMs on Biomass Production 10.4 Physiological Response to Heavy Metal Stress 10.4.1 Effect of HMs on Transpiration 10.4.2 Effect of HM on Imbibitions 10.4.3 Effect of HMs on Seed Germination 10.4.4 Effect of HMs on Mitochondrial Respiration 10.4.5 Effect of HMs on Membrane Functionality 10.4.6 Effect of HMs in Water Relation 10.4.7 Effect of HMs on Photosynthesis 10.4.7.1 Effect of HMs on Photosynthetic Pigments 10.4.7.2 Effect of HMs on Photosynthetic Enzymes 10.4.7.3 Effect of HMs on Photosystem 10.5 Resistance and Tolerance to Heavy Metal Stress 10.5.1 Restriction of Uptake and Transport of HMs 10.5.1.1 Root Exudates 10.5.1.2 Mycorrhizas 10.5.1.3 The Cell Wall 10.5.1.4 Plasma Membrane 10.5.2 Complexation and Compartmentation of HMs within the Plant Cell 10.5.2.1 Intracellular Sequestration 10.5.2.2 Formation of Metal Complex with Phytochelatins 10.5.2.3 Complexing by Metallothioneins 10.5.3 Heat Shock Proteins 10.5.4 Proline 10.5.5 Plant Antioxidant System 10.6 Molecular Response to Heavy Metal Stress 10.6.1 Signal Transduction in Response to Heavy Metal Stress 10.6.1.1 The Ca-Calmodulin System 10.6.1.2 Mitogen-Activated Protein Kinase (MAPK) Cascade 10.6.1.3 Hormones in the Heavy Metal Response 10.6.1.4 The Role of Reactive Oxygen Species 10.6.2 Modulation of Transcription Factors 10.6.3 Mobilization of Metal Ions to Extracellular Exudates and to the Cell Wall 10.6.4 HM Ion Uptake from the Soil 10.6.4.1 HM Ion Transport through the Plasma Membrane in Roots 10.6.4.2 Reduced HM Uptake and Efflux Pumping at the Plasma Membrane 10.6.5 Root-to-Shoot 10.6.5.1 The HMA Family of Transporters 10.6.5.2 The MATE Family of Efflux Proteins 10.6.5.3 The Oligopeptide Transporters Family 10.6.6 HM Chelation in the Cytosol 10.6.6.1 Phytochelatins 10.6.6.2 Metallothion (MTs) 10.6.6.3 Ferritins 10.6.6.4 Organic Acids, Amino Acids and Phosphate Derivatives 10.6.6.5 Phytate (Myo-Inositol Hexakisphosphate) 10.6.7 Metal Sequestration in the Vacuole by Tonoplast Transporters 10.6.7.1 The ABC Transporters 10.6.7.2 The CDF Transporters 10.6.7.3 The HMA Transporters 10.6.7.4 CaCA Transporters 10.6.7.5 NRAMP Transporters 10.6.8 Oxidative Stress Defense Mechanisms and the Repair of Stress-Damaged Proteins References Chapter 11: Plant Response to Multiple Stresses 11.1 Introduction 11.2 Physiological Response to Multiple Stresses 11.2.1 Stress Proteins 11.2.2 Antioxidants 11.2.3 Soluble Metabolites 11.2.3.1 Soluble Sugars and Hormones 11.2.3.2 Organic Acids 11.3 Molecular Response to Multiple Stresses 11.3.1 Salinity 11.3.2 Drought 11.4 Interactions between Biotic and Abiotic Stresses 11.4.1 Transcription Factors (TFs) 11.4.2 Mitogen-Activated Protein Kinase (MAPK) Cascades 11.4.3 Reactive Oxygen Species (ROS) 11.5 Perspectives: Consideration of Plant Stress Research in a New View References Index