دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: DEBORAH J. RUMSEY
سری:
ISBN (شابک) : 9781119827399, 1119827396
ناشر: JOHN WILEY
سال نشر: 2021
تعداد صفحات: [451]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب STATISTICS II FOR DUMMIES. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار II برای ساختگی ها. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سفر آماری خود را با این مرجع جامع آمار تکمیل شده از طریق انحرافات استاندارد، فواصل اطمینان و آزمون فرضیه ادامه دهید؟ سپس برای مرحله بعدی آماده هستید: Statistics II. و هیچ راهی بهتر از Statistics II For Dummies برای مقابله با این موضوع چالش برانگیز وجود ندارد! در صورت نیاز به بررسی موضوعات قبلی، مروری کوتاه بر آمار I داشته باشید، و سپس به توضیح کاملی از تمام مفاهیم Statistic II، از جمله رگرسیون چندگانه، تجزیه و تحلیل واریانس (ANOVA)، آزمونهای مجذور کای، رویههای ناپارامتریک، بپردازید. و تجزیه و تحلیل مجموعه داده های بزرگ. در پایان کتاب، میدانید که چگونه از همه ابزارهای آماری برای ایجاد یک داستان عالی در مورد دادههای خود استفاده کنید. برای هر تکنیک Statistics II در کتاب، یک نمای کلی از زمان و چرایی استفاده از آن، نحوه دانستن زمانی که به آن نیاز دارید، دستورالعمل های گام به گام در مورد نحوه انجام آن، و نکات و ترفندهایی برای کار بر روی راه حل دریافت می کنید. همچنین میبینید: چه چیزی هر تکنیک را متمایز میکند و نتایج چه میگویند چگونه تکنیکها را در زندگی واقعی به کار ببریم تفسیری از خروجی رایانه برای اهداف تجزیه و تحلیل دادهها دستورالعملهای استفاده از Minitab برای انجام بسیاری از محاسبات تمرین با مثالهای فراوان با آمار II برای Dummies، تکنیک های بیشتری برای تجزیه و تحلیل مجموعه ای از داده ها پیدا خواهید کرد. در کلاس Statistics II خود شروع کنید، یا از آن در ارتباط با کتاب درسی خود استفاده کنید تا به شما در پیشرفت در آمار کمک کند!
Continue your statistics journey with this all-encompassing reference Completed Statistics through standard deviations, confidence intervals, and hypothesis testing? Then you’re ready for the next step: Statistics II. And there’s no better way to tackle this challenging subject than with Statistics II For Dummies! Get a brief overview of Statistics I in case you need to brush up on earlier topics, and then dive into a full explanation of all Statistic II concepts, including multiple regression, analysis of variance (ANOVA), Chi-square tests, nonparametric procedures, and analyzing large data sets. By the end of the book, you’ll know how to use all the statistics tools together to create a great story about your data. For each Statistics II technique in the book, you get an overview of when and why it’s used, how to know when you need it, step-by-step directions on how to do it, and tips and tricks for working through the solution. You also find: What makes each technique distinct and what the results say How to apply techniques in real life An interpretation of the computer output for data analysis purposes Instructions for using Minitab to work through many of the calculations Practice with a lot of examples With Statistics II For Dummies, you will find even more techniques to analyze a set of data. Get a head start on your Statistics II class, or use this in conjunction with your textbook to help you thrive in statistics!
Title Page Copyright Page Table of Contents Introduction About This Book Foolish Assumptions Icons Used in This Book Beyond the Book Where to Go from Here Part 1 Tackling Data Analysis and Model-Building Basics Chapter 1 Beyond Number Crunching: The Art and Science of Data Analysis Data Analysis: Looking before You Crunch Nothing (not even a straight line) lasts forever Data snooping isn’t cool No (data) fishing allowed Getting the Big Picture: An Overview of Stats II Population parameter Sample statistic Confidence interval Hypothesis test Analysis of variance (ANOVA) Multiple comparisons Interaction effects Correlation Linear regression Chi-square tests Chapter 2 Finding the Right Analysis for the Job Categorical versus Quantitative Variables Statistics for Categorical Variables Estimating a proportion Comparing proportions Looking for relationships between categorical variables Building models to make predictions Statistics for Quantitative Variables Making estimates Making comparisons Exploring relationships Predicting y using x Avoiding Bias Measuring Precision with Margin of Error Knowing Your Limitations Chapter 3 Having the Normal and Sampling Distributions in Your Back Pocket Recognizing the VIP Distribution — the Normal Characterizing the normal Standardizing to the standard normal (Z-) distribution Using the normal table Finding probabilities for the normal distribution Finally Getting Comfortable with Sampling Distributions The mean and standard error of a sampling distribution Sampling distribution of  Sampling distribution of  Heads Up! Building Confidence Intervals and Hypothesis Tests Confidence interval for the population mean Confidence interval for the population proportion Hypothesis test for population mean Hypothesis test for the population proportion Chapter 4 Reviewing Confidence Intervals and Hypothesis Tests Estimating Parameters by Using Confidence Intervals Getting the basics: The general form of a confidence interval Finding the confidence interval for a population mean What changes the margin of error? Interpreting a confidence interval What’s the Hype about Hypothesis Tests? What Ho and Ha really represent Gathering your evidence into a test statistic Determining strength of evidence with a p-value False alarms and missed opportunities: Type I and II errors The power of a hypothesis test Part 2 Using Different Types of Regression to Make Predictions Chapter 5 Getting in Line with Simple Linear Regression Exploring Relationships with Scatterplots and Correlations Using scatterplots to explore relationships Collating the information by using the correlation coefficient Building a Simple Linear Regression Model Finding the best-fitting line to model your data The y-intercept of the regression line The slope of the regression line Making point estimates by using the regression line No Conclusion Left Behind: Tests and Confidence Intervals for Regression Scrutinizing the slope Inspecting the y-intercept Building confidence intervals for the average response Making the band with prediction intervals Checking the Model’s Fit (The Data, Not the Clothes!) Defining the conditions Finding and exploring the residuals Using r2 to measure model fit Scoping for outliers Knowing the Limitations of Your Regression Analysis Avoiding slipping into cause-and-effect mode Extrapolation: The ultimate no-no Sometimes you need more than one variable Chapter 6 Multiple Regression with Two X Variables Getting to Know the Multiple Regression Model Discovering the uses of multiple regression Looking at the general form of the multiple regression model Stepping through the analysis Looking at x’s and y’s Collecting the Data Pinpointing Possible Relationships Making scatterplots Correlations: Examining the bond Checking for Multicolinearity Finding the Best-Fitting Model for Two x Variables Getting the multiple regression coefficients Interpreting the coefficients Testing the coefficients Predicting y by Using the x Variables Checking the Fit of the Multiple Regression Model Noting the conditions Plotting a plan to check the conditions Checking the three conditions Chapter 7 How Can I Miss You If You Won’t Leave? Regression Model Selection Getting a Kick out of Estimating Punt Distance Brainstorming variables and collecting data Examining scatterplots and correlations Just Like Buying Shoes: The Model Looks Nice, But Does It Fit? Assessing the fit of multiple regression models Model selection procedures Chapter 8 Getting Ahead of the Learning Curve with Nonlinear Regression Anticipating Nonlinear Regression Starting Out with Scatterplots Handling Curves in the Road with Polynomials Bringing back polynomials Searching for the best polynomial model Using a second-degree polynomial to pass the quiz Assessing the fit of a polynomial model Making predictions Going Up? Going Down? Go Exponential! Recollecting exponential models Searching for the best exponential model Spreading secrets at an exponential rate Chapter 9 Yes, No, Maybe So: Making Predictions by Using Logistic Regression Understanding a Logistic Regression Model How is logistic regression different from other regressions? Using an S-curve to estimate probabilities Interpreting the coefficients of the logistic regression model The logistic regression model in action Carrying Out a Logistic Regression Analysis Running the analysis in Minitab Finding the coefficients and making the model Estimating p Checking the fit of the model Fitting the movie model Part 3 Analyzing Variance with ANOVA Chapter 10 Testing Lots of Means? Come On Over to ANOVA! Comparing Two Means with a t-Test Evaluating More Means with ANOVA Spitting seeds: A situation just waiting for ANOVA Walking through the steps of ANOVA Checking the Conditions Verifying independence Looking for what’s normal Taking note of spread Setting Up the Hypotheses Doing the F-Test Running ANOVA in Minitab Breaking down the variance into sums of squares Locating those mean sums of squares Figuring the F-statistic Making conclusions from ANOVA What’s next? Checking the Fit of the ANOVA Model Chapter 11 Sorting Out the Means with Multiple Comparisons Following Up after ANOVA Comparing cellphone minutes: An example Setting the stage for multiple comparison procedures Pinpointing Differing Means with Fisher and Tukey Fishing for differences with Fisher’s LSD Separating the turkeys with Tukey’s test Examining the Output to Determine the Analysis So Many Other Procedures, So Little Time! Controlling for baloney with the Bonferroni adjustment Comparing combinations by using Scheffé’s method Finding out whodunit with Dunnett’s test Staying cool with Student Newman-Keuls Duncan’s multiple range test Chapter 12 Finding Your Way through Two-Way ANOVA Setting Up the Two-Way ANOVA Model Determining the treatments Stepping through the sums of squares Understanding Interaction Effects What is interaction, anyway? Interacting with interaction plots Testing the Terms in Two-Way ANOVA Running the Two-Way ANOVA Table Interpreting the results: Numbers and graphs Are Whites Whiter in Hot Water? Two-Way ANOVA Investigates Chapter 13 Regression and ANOVA: Surprise Relatives! Seeing Regression through the Eyes of Variation Spotting variability and finding an “x-planation” Getting results with regression Assessing the fit of the regression model Regression and ANOVA: A Meeting of the Models Comparing sums of squares Dividing up the degrees of freedom Bringing regression to the ANOVA table Relating the F- and t-statistics: The final frontier Part 4 Building Strong Connections with Chi-Square Tests and Nonparametrics Chapter 14 Forming Associations with Two-Way Tables Breaking Down a Two-Way Table Organizing data into a two-way table Filling in the cell counts Making marginal totals Breaking Down the Probabilities Marginal probabilities Joint probabilities Conditional probabilities Trying To Be Independent Checking for independence between two categories Checking for independence between two variables Demystifying Simpson’s Paradox Experiencing Simpson’s Paradox Figuring out why Simpson’s Paradox occurs Keeping one eye open for Simpson’s Paradox Chapter 15 Being Independent Enough for the Chi-Square Test The Chi-Square Test for Independence Collecting and organizing the data Determining the hypotheses Figuring expected cell counts Checking the conditions for the test Calculating the Chi-square test statistic Finding your results on the Chi-square table Drawing your conclusions Putting the Chi-square to the test Comparing Two Tests for Comparing Two Proportions Chapter 16 Using Chi-Square Tests for Goodness-of-Fit (Your Data, Not Your Jeans) Finding the Goodness-of-Fit Statistic What’s observed versus what’s expected Calculating the goodness-of-fit statistic Interpreting the Goodness-of-Fit Statistic Using a Chi-Square Checking the conditions before you start The steps of the Chi-square goodness-of-fit test Chapter 17 Rebels Without a Distribution — Nonparametric Procedures Arguing for Nonparametric Statistics No need to fret if conditions aren’t met The median’s in the spotlight for a change So, what’s the catch? Mastering the Basics of Nonparametric Statistics Sign Chapter 18 All Signs Point to the Sign Test Reading the Signs: The Sign Test Testing the median in real estate Estimating the median Testing matched pairs Part 5 Putting it All Together: Multi-Stage Analysis of a Large Data Set Chapter 19 Conducting a Multi-Stage Analysis of a Large Data Set Steps Involved in Working with a Large Data Set Wrangling Data Discovery Structuring Cleaning Enriching Validating Publishing Visualizing Data Exploring the Data Looking for Relationships Building Models and Making Inferences Sharing the Story Who is the audience? Make an outline Include an executive summary Check your writing Chapter 20 A Statistician Watches the Movies Examining the Movie Variables and Asking Questions Visualizing the Movie Data Categorical movie variables Quantitative movie variables Doing Descriptive Dirty Work Looking for Relationships Relationships between quantitative movie variables Relationships between two categorical variables Relationships between quantitative and categorical variables Building a Model for Predicting U.S. Revenue Writing It Up Chapter 21 Looking Inside the Refrigerator Refrigerator Data — The Variables Exploring the Data Analyzing the Data Writing It Up Part 6 The Part of Tens Chapter 22 Ten Common Errors in Statistical Conclusions Claiming These Statistics Prove . . . It’s Not Technically Statistically Significant, But . . . Concluding That x Causes y Assuming the Data Was Normal Only Reporting “Important” Results Assuming a Bigger Sample Is Always Better It’s Not Technically Random, But . . . Assuming That 1,000 Responses Is 1,000 Responses Of Course the Results Apply to the General Population Deciding Just to Leave It Out Chapter 23 Ten Ways to Get Ahead by Knowing Statistics Asking the Right Questions Being Skeptical Collecting and Analyzing Data Correctly Calling for Help Retracing Someone Else’s Steps Putting the Pieces Together Checking Your Answers Explaining the Output Making Convincing Recommendations Establishing Yourself as the Statistics Go-To Person Chapter 24 Ten Cool Jobs That Use Statistics Pollster Data Scientist Ornithologist (Bird Watcher) Sportscaster or Sportswriter Journalist Crime Fighter Medical Professional Marketing Executive Lawyer Appendix Reference Tables Index EULA