ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Statistical methods for spatial data analysis

دانلود کتاب روش های آماری برای تجزیه و تحلیل داده های مکانی

Statistical methods for spatial data analysis

مشخصات کتاب

Statistical methods for spatial data analysis

دسته بندی: سازمان و پردازش داده ها
ویرایش:  
نویسندگان:   
سری: Texts in statistical science 
ISBN (شابک) : 9781584883227, 1584883227 
ناشر: Chapman & Hall/CRC 
سال نشر: 2005 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : CHM (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Statistical methods for spatial data analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روش های آماری برای تجزیه و تحلیل داده های مکانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روش های آماری برای تجزیه و تحلیل داده های مکانی

درک آمار مکانی نیاز به ابزارهایی از آمار کاربردی و ریاضی، نظریه مدل خطی، رگرسیون، سری های زمانی و فرآیندهای تصادفی دارد. همچنین نیاز به ذهنیتی دارد که بر ویژگی‌های منحصر به فرد داده‌های مکانی و توسعه ابزارهای تحلیلی تخصصی که به صراحت برای تجزیه و تحلیل داده‌های مکانی طراحی شده‌اند، تمرکز کند. روش‌های آماری برای تجزیه و تحلیل داده‌های مکانی به تقاضای متنی پاسخ می‌دهد که همه این عوامل را با ارائه یک توضیح متعادل که هم مبانی نظری حوزه آمار مکانی و هم روش‌های عملی برای تجزیه و تحلیل داده‌های مکانی را بررسی می‌کند، پاسخ می‌دهد. این کتاب یک درمان جامع و گویا از نظریه‌های آماری پایه و روش‌های تجزیه و تحلیل داده‌های مکانی است که از رویکردی مبتنی بر مدل و فراوانی استفاده می‌کند که بر حوزه فضایی تأکید دارد. ابزارها و رویکردهای ضروری را معرفی می‌کند، از جمله: معیارهای خودهمبستگی و نقش آنها در تجزیه و تحلیل داده‌ها. پس زمینه و چارچوب نظری پشتیبانی از زمینه های تصادفی. تجزیه و تحلیل الگوهای نقطه فضایی نقشه برداری شده. تخمین و مدلسازی تابع کوواریانس و نیم متغیریگرام. درمان جامع تحلیل فضایی در حوزه طیفی. و پیش بینی فضایی و کریجینگ. این جلد همچنین تجزیه و تحلیل کاملی از رگرسیون فضایی ارائه می‌کند، که توسعه دقیق مدل‌های خطی با خطاهای نامرتبط، مدل‌های خطی با خطاهای همبسته فضایی و مدل‌های ترکیبی خطی تعمیم‌یافته را برای داده‌های مکانی ارائه می‌دهد. این به طور خلاصه مدل‌های سلسله مراتبی بیزی را مورد بحث قرار می‌دهد و با بررسی‌هایی در مورد شبیه‌سازی میدان‌های تصادفی، کوواریانس غیر ثابت و فرآیندهای مکانی-زمانی به پایان می‌رسد. مطالب اضافی در وب سایت CRC Press مکمل محتوای این کتاب است. این سایت مجموعه داده هایی را ارائه می دهد که به عنوان نمونه در متن استفاده می شوند، کد نرم افزاری که می تواند برای پیاده سازی بسیاری از روش های اصلی توصیف شده و نشان داده شده استفاده شود، و به روز رسانی خود متن را ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

Understanding spatial statistics requires tools from applied and mathematical statistics, linear model theory, regression, time series, and stochastic processes. It also requires a mindset that focuses on the unique characteristics of spatial data and the development of specialized analytical tools designed explicitly for spatial data analysis. Statistical Methods for Spatial Data Analysis answers the demand for a text that incorporates all of these factors by presenting a balanced exposition that explores both the theoretical foundations of the field of spatial statistics as well as practical methods for the analysis of spatial data. This book is a comprehensive and illustrative treatment of basic statistical theory and methods for spatial data analysis, employing a model-based and frequentist approach that emphasizes the spatial domain. It introduces essential tools and approaches including: measures of autocorrelation and their role in data analysis; the background and theoretical framework supporting random fields; the analysis of mapped spatial point patterns; estimation and modeling of the covariance function and semivariogram; a comprehensive treatment of spatial analysis in the spectral domain; and spatial prediction and kriging. The volume also delivers a thorough analysis of spatial regression, providing a detailed development of linear models with uncorrelated errors, linear models with spatially-correlated errors and generalized linear mixed models for spatial data. It succinctly discusses Bayesian hierarchical models and concludes with reviews on simulating random fields, non-stationary covariance, and spatio-temporal processes. Additional material on the CRC Press website supplements the content of this book. The site provides data sets used as examples in the text, software code that can be used to implement many of the principal methods described and illustrated, and updates to the text itself.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Preface
1 Introduction
	1.1 The Need for Spatial Analysis
	1.2 Types of Spatial Data
		1.2.1 Geostatistical Data
		1.2.2 Lattice Data, Regional Data
		1.2.3 Point Patterns
	1.3 Autocorrelation—Concept and Elementary Measures
		1.3.1 Mantel’s Tests for Clustering
		1.3.2 Measures on Lattices
		1.3.3 Localized Indicators of Spatial Autocorrelation
	1.4 Autocorrelation Functions
		1.4.1 The Autocorrelation Function of a Time Series
		1.4.2 Autocorrelation Functions in Space—Covariance and Semivariogram
		1.4.3 From Mantel’s Statistic to the Semivariogram
	1.5 The Effects of Autocorrelation on Statistical Inference
		1.5.1 Effects on Prediction
		1.5.2 Effects on Precision of Estimators
	1.6 Chapter Problems
2 Some Theory on Random Fields
	2.1 Stochastic Processes and Samples of Size One
	2.2 Stationarity, Isotropy, and Heterogeneity
	2.3 Spatial Continuity and Differentiability
	2.4 Random Fields in the Spatial Domain
		2.4.1 Model Representation
		2.4.2 Convolution Representation
	2.5 Random Fields in the Frequency Domain
		2.5.1 Spectral Representation of Deterministic Functions
		2.5.2 Spectral Representation of Random Processes
		2.5.3 Covariance and Spectral Density Function
		2.5.4 Properties of Spectral Distribution Functions
		2.5.5 Continuous and Discrete Spectra
		2.5.6 Linear Location-Invariant Filters
		2.5.7 Importance of Spectral Analysis
	2.6 Chapter Problems
3 Mapped Point Patterns
	3.1 Random, Aggregated, and Regular Patterns
	3.2 Binomial and Poisson Processes
		3.2.1 Bernoulli and Binomial Processes
		3.2.2 Poisson Processes
		3.2.3 Process Equivalence
	3.3 Testing for Complete Spatial Randomness
		3.3.1 Monte Carlo Tests
		3.3.2 Simulation Envelopes
		3.3.3 Tests Based on Quadrat Counts
		3.3.4 Tests Based on Distances
	3.4 Second-Order Properties of Point Patterns
		3.4.1 The Reduced Second Moment Measure— The K-Function
		3.4.2 Estimation of K- and L-Functions
		3.4.3 Assessing the Relationship between Two Patterns
	3.5 The Inhomogeneous Poisson Process
		3.5.1 Estimation of the Intensity Function
		3.5.2 Estimating the Ratio of Intensity Functions
		3.5.3 Clustering and Cluster Detection
	3.6 Marked and Multivariate Point Patterns
		3.6.1 Extensions
		3.6.2 Intensities and Moment Measures for Multivariate Point Patterns
	3.7 Point Process Models
		3.7.1 Thinning and Clustering
		3.7.2 Clustered Processes
		3.7.3 Regular Processes
	3.8 Chapter Problems
4 Semivariogram and Covariance Function Analysis and Estimation
	4.1 Introduction
	4.2 Semivariogram and Covariogram
		4.2.1 Definition and Empirical Counterparts
		4.2.2 Interpretation as Structural Tools
	4.3 Covariance and Semivariogram Models
		4.3.1 Model Validity
		4.3.2 The Matérn Class of Covariance Functions
		4.3.3 The Spherical Family of Covariance Functions
		4.3.4 Isotropic Models Allowing Negative Correlations
		4.3.5 Basic Models Not Second-Order Stationary
		4.3.6 Models with Nugget Effects and Nested Models
		4.3.7 Accommodating Anisotropy
	4.4 Estimating the Semivariogram
		4.4.1 Matheron’s Estimator
		4.4.2 The Cressie-Hawkins Robust Estimator
		4.4.3 Estimators Based on Order Statistics and Quantiles
	4.5 Parametric Modeling
		4.5.1 Least Squares and the Semivariogram
		4.5.2 Maximum and Restricted Maximum Likelihood
		4.5.3 Composite Likelihood and Generalized Estimating Equations
		4.5.4 Comparisons
	4.6 Nonparametric Estimation and Modeling
		4.6.1 The Spectral Approach
		4.6.2 The Moving-Average Approach
		4.6.3 Incorporating a Nugget Effect
	4.7 Estimation and Inference in the Frequency Domain
		4.7.1 The Periodogram on a Rectangular Lattice
		4.7.2 Spectral Density Functions
		4.7.3 Analysis of Point Patterns
	4.8 On the Use of Non-Euclidean Distances in Geostatistics
		4.8.1 Distance Metrics and Isotropic Covariance Functions
		4.8.2 Multidimensional Scaling
	4.9 Supplement: Bessel Functions
		4.9.1 Bessel Function of the First Kind
		4.9.2 Modified Bessel Functions of the First and Second Kind
	4.10 Chapter Problems
5 Spatial Prediction and Kriging
	5.1 Optimal Prediction in Random Fields
	5.2 Linear Prediction—Simple and Ordinary Kriging
		5.2.1 The Mean Is Known—Simple Kriging
		5.2.2 The Mean Is Unknown and Constant—Ordinary Kriging
		5.2.3 Effects of Nugget, Sill, and Range
	5.3 Linear Prediction with a Spatially Varying Mean
		5.3.1 Trend Surface Models
		5.3.2 Localized Estimation
		5.3.3 Universal Kriging
	5.4 Kriging in Practice
		5.4.1 On the Uniqueness of the Decomposition
		5.4.2 Local Versus Global Kriging
		5.4.3 Filtering and Smoothing
	5.5 Estimating Covariance Parameters
		5.5.1 Least Squares Estimation
		5.5.2 Maximum Likelihood
		5.5.3 Restricted Maximum Likelihood
		5.5.4 Prediction Errors When Covariance Parameters Are Estimated
	5.6 Nonlinear Prediction
		5.6.1 Lognormal Kriging
		5.6.2 Trans-Gaussian Kriging
		5.6.3 Indicator Kriging
		5.6.4 Disjunctive Kriging
	5.7 Change of Support
		5.7.1 Block Kriging
		5.7.2 The Multi-Gaussian Approach
		5.7.3 The Use of Indicator Data
		5.7.4 Disjunctive Kriging and Isofactorial Models
		5.7.5 Constrained Kriging
	5.8 On the Popularity of the Multivariate Gaussian Distribution
	5.9 Chapter Problems
6 Spatial Regression Models
	6.1 Linear Models with Uncorrelated Errors
		6.1.1 Ordinary Least Squares—Inference and Diagnostics
		6.1.2 Working with OLS Residuals
		6.1.3 Spatially Explicit Models
	6.2 Linear Models with Correlated Errors
		6.2.1 Mixed Models
		6.2.2 Spatial Autoregressive Models
		6.2.3 Generalized Least Squares—Inference and Diagnostics
	6.3 Generalized Linear Models
		6.3.1 Background
		6.3.2 Fixed Effects and the Marginal Specification
		6.3.3 A Caveat
		6.3.4 Mixed Models and the Conditional Specification
		6.3.5 Estimation in Spatial GLMs and GLMMs
		6.3.6 Spatial Prediction in GLMs
	6.4 Bayesian Hierarchical Models
		6.4.1 Prior Distributions
		6.4.2 Fitting Bayesian Models
		6.4.3 Selected Spatial Models
	6.5 Chapter Problems
7 Simulation of Random Fields
	7.1 Unconditional Simulation of Gaussian Random Fields
		7.1.1 Cholesky (LU) Decomposition
		7.1.2 Spectral Decomposition
	7.2 Conditional Simulation of Gaussian Random Fields
		7.2.1 Sequential Simulation
		7.2.2 Conditioning a Simulation by Kriging
	7.3 Simulated Annealing
	7.4 Simulating from Convolutions
	7.5 Simulating Point Processes
		7.5.1 Homogeneous Poisson Process on the Rectangle (0,0)× (a,b) with Intensity λ
		7.5.2 Inhomogeneous Poisson Process with Intensity λ(s)
	7.6 Chapter Problems
8 Non-Stationary Covariance
	8.1 Types of Non-Stationarity
	8.2 Global Modeling Approaches
		8.2.1 Parametric Models
		8.2.2 Space Deformation
	8.3 Local Stationarity
		8.3.1 Moving Windows
		8.3.2 Convolution Methods
		8.3.3 Weighted Stationary Processes
9 Spatio-Temporal Processes
	9.1 A New Dimension
	9.2 Separable Covariance Functions
	9.3 Non-Separable Covariance Functions
		9.3.1 Monotone Function Approach
		9.3.2 Spectral Approach
		9.3.3 Mixture Approach
		9.3.4 Differential Equation Approach
	9.4 The Spatio-Temporal Semivariogram
	9.5 Spatio-Temporal Point Processes
		9.5.1 Types of Processes
		9.5.2 Intensity Measures
		9.5.3 Stationarity and Complete Randomness
References
Author Index
Subject Index




نظرات کاربران