ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Springer Handbook of Surface Science

دانلود کتاب کتابچه راهنمای علوم سطحی Springer

Springer Handbook of Surface Science

مشخصات کتاب

Springer Handbook of Surface Science

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783030469047, 9783030469061 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 1273 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 53 مگابایت 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Springer Handbook of Surface Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتابچه راهنمای علوم سطحی Springer نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword
Preface
About the Editors
About the Authors
Contents
List of Abbreviations
Part A Kinetics and Thermodynamics at Surfaces
	1 Roughening Transition:Theories and Experiments
		1.1 Overview
		1.2 Theoretical Considerations
		1.3 Renormalization Group Analysis
		1.4 (110) Surfaces
		1.5 Vicinal Surfaces
		1.6 Kinetic Roughening
		1.7 Nozières–Gallet Effect
		1.8 Experimental Considerations
		1.9 Diffraction Techniques
		1.10 Experimental Results
		1.11 Conclusions: Growth
		References
	2 Surface Diffusion
		2.1 Elementary Mechanism of Surface Diffusion
		2.2 Single-Particle and Collective Diffusion Coefficients
		2.3 Experimental Measurements of Diffusion
		2.4 Perspectives—Towards Complex Surface Motion
		References
	3 Surface Thermodynamics and Vibrational Entropy
		3.1 Some Essentials of Bulk Thermodynamics
		3.2 Surface Thermodynamic Functions
		3.3 Surface Nomenclature and Geometry
		3.4 Theoretical Techniques
		3.5 Results
		3.6 Summary
		References
Part B Surface Crystallography
	4 Crystallography of Surfaces
		4.1 Context
		4.2 Bravais Lattices and Crystal Structure
		4.3 Point and Space Group Symmetries
		4.4 The Reciprocal Lattice and Its Implications
		4.5 Low-Energy Electron Diffraction (LEED)
		4.6 Stereographic Representation of Surface Symmetry and Structure
		4.7 Notational Conventions for Surface Superstructure
		4.8 On the Choice of the (11) Cell
		References
	5 Ab Initio Simulations of Semiconductor Surfacesand Interfaces
		5.1 Overview
		5.2 Theoretical Framework
		5.3 Surface/Molecule Interaction
		5.4 DFT for Sensing
		5.5 DFT for Interfaces
		5.6 Exploring Water/Solid Interfacesvia DFT Simulations
		5.7 Conclusions
		References
	6 Surfaces of Bulk Oxides
		6.1 Overview
		6.2 Oxides of Rocksalt Structure
		6.3 The SrTiO_3(100) Surface
		6.4 Outlook
		References
	7 Crystallography of Metal Surfaces and Adsorbed Layers
		7.1 Experimental Techniques
		7.2 Surface Geometries
		7.3 Conclusion
		References
	8 Local Information with Scanning Tunneling Microscopy
		8.1 Introduction
		8.2 Principles of Scanning TunnelingMicroscopy
		8.3 Local Imaging
		8.4 Local Spectroscopy
		8.5 Manipulation
		8.6 Outlook
		References
	9 Two-Dimensional Crystals: Graphene, Silicene, Germanene, and Stanene
		9.1 Graphene on Transition-Metal Substrates
		9.2 Epitaxial Silicene on Transition-Metal Substrates
		9.3 Germanene Growth on Transition-Metal Surfaces
		9.4 Synthesis of Stanene and Other Related Monolayers
		9.5 Outlook
		References
	10 Thin Oxide Films as Model Systems for HeterogeneousCatalysts
		10.1 Preamble
		10.2 Structural Properties of Epitaxial Oxide Films
		10.3 Tuning the Properties of Oxide Films
		10.4 Chemical Reactivity of Oxide Surfaces
		10.5 Oxide Films Beyond UHV
		10.6 Conclusions
		References
Part C Electronic Structure Of Surfaces
	11 Integrated Experimental Methods for the Investigation of the Electronic Structure of Molecules on Surfaces
		11.1 Photoemission Spectroscopy
		11.2 Chemical Shifts in XPS
		11.3 Concluding Remarks
		References
	12 Electronic States of Vicinal Surfaces
		12.1 General ConsiderationsAbout Vicinal Surfaces
		12.2 Structural Properties of Vicinal Surfaces
		12.3 Surface Core-Level Shifts at a Vicinal Surface
		12.4 Surface States at Vicinal Noble Metal Surfaces
		12.5 Quantum Well States in Stepped Thin Films
		12.6 Spin-Textured Surface Bands at Vicinal Surfaces
		12.7 Summary and Outlook
		References
	13 Imaging at the Mesoscale (LEEM, PEEM)
		13.1 Cathode Lens Microscopy
		13.2 Low-Energy Electron Microscopy
		13.3 Photoemission Electron Microscopy
		13.4 Perspectives
		References
	14 Scanning Photoelectron Microscopy: Past, Presentand Future
		14.1 X-Ray Microscopy—A Brief Overview
		14.2 Operation Principle of SPEM
		14.3 Some Representative Examples of Systems Studied with SPEMs
		14.4 Near-ambient Pressure (NAPnear-ambient pressure) Experiments with SPEM
		14.5 Conclusions
		References
	15 Natural Topological Insulator Heterostructures
		15.1 Computational Methods
		15.2 (CIVBVI)_n (AV_2BVI_3)_m Superlattices(n=1, m>1)
		15.3 (CIV BVI)_n (AV_2 BVI_3)_m Compounds(n>1, m=1)
		15.4 Phase-Change Materials
		15.5 Conclusions
		References
	16 Energetic Ground State Calculations, Electronic BandStructure at Surfaces
		16.1 Preliminary Remarks
		16.2 Density Functional Theory at Surfaces
		16.3 Electronic States at Surfaces
		16.4 Adsorption of Simple Atomsand Molecules
		16.5 Adsorption of Organic Molecules
		16.6 Conclusions
		References
Part D Collective And Single Particle Excitations
	17 Electron Energy-Loss and Photoelectron Spectroscopies of Surfaces and Two-Dimensional Crystals
		17.1 Probing Solid Targets with Electrons and Light: What Kind of a Theory Do We Need?
		17.2 Inelastic Scattering of Electrons: General Formalism
		17.3 Energy-Loss Functions
		17.4 Application to EELS of Metal Surfaces
		17.5 EELS of Q2-D Materials: Important Particulars
		17.6 Dielectric Screening in Photoemission
		17.7 Calculation of Response Functions
		17.8 Conclusions and Perspectives
		References
	18 Surface Plasmons and Plasmonics
		18.1 Dynamical Screening at Surfaces
		18.2 Surface Plasmon Dispersion
		18.3 Lattice Effects on the SurfacePlasmon Dispersion
		18.4 Effect of the Band Structureon Surface Plasmon Energyand Dispersion:The Case of Noble Metals
		18.5 Surface Plasmon Damping
		18.6 Multipole Plasmon Modeat Noble Metal Surfaces
		18.7 Temperature Dependence of the SP
		18.8 Effect of Adsorption and of SurfaceNanostructuringon Surface PlasmonEnergy and Dispersion
		18.9 Mie Resonance Shiftand Surface Plasmon Dispersion
		18.10 Surface Plasmonsand Surface Plasmon Polaritons
		18.11 Conclusions and Perspectives
		References
	19 Plasmons in One and Two Dimensions
		19.1 Sheet Plasmons
		19.2 Quasi-One-Dimensional Plasmons
		19.3 Measured Peak Width of Plasmon Losses
		19.4 Conclusions
		References
	20 Ab Initio Theory of Interband Transitions
		20.1 General Theoretical Framework
		20.2 Theory of Surface Spectroscopy
		20.3 Ab-initio Approach
		20.4 Clean Semiconductor Surfaces
		20.5 Adsorbate-induced Effects
		20.6 Excitonic and Local-Field Effects
		20.7 Concluding Remarks
		References
Part E Surface Magnetism
	21 Magnetic Surfaces, Thin Films and Nanostructures
		21.1 Fundamentals
		21.2 Surfaces of Bulk Crystals
		21.3 Ultrathin Films
		21.4 Non-collinear Spin Configurations
		21.5 One-Dimensional Atomic Chains
		21.6 Single-Atom Magnets
		21.7 Outlook and Perspectives
		References
	22 Magnetic Properties of Oxide Surfaces and Films
		22.1 Overview
		22.2 Experimental Methods
		22.3 Engineering Oxide–Metal Interfaces with Buffer Layers
		22.4 Chemical and Magnetic Properties in Low-Dimensional Transition Metal Oxides
		22.5 Conclusions and Perspectives
		References
Part F Lattice Dynamics
	23 Surface Phonons: Theoretical Methods and Results
		23.1 Concepts and Methods of Surface Lattice Dynamics
		23.2 The Role of Electrons in Surface Dynamics
		23.3 Some Open Problems
		References
	24 Electron-Phonon Interaction on Metallic Surfaces,Overlayers and Thin Films
		24.1 Basic Concepts
		24.2 Computational Approaches
		24.3 Experimental Determination of Electron–PhononCoupling Strength
		24.4 Electron–Phonon Couplingof Electronic Surface States
		24.5 Electron–Phonon Interactionand Phonons
		24.6 Conclusions
		References
	25 Spatially Resolved Surface Vibrational Spectroscopies
		25.1 Surface Spectroscopy
		25.2 STM-IETS Experiments and Theory
		25.3 Survey of STM-IETS Reportsfor Various Systems
		25.4 In-Depth Analysis of IETSof an Alkanethiol Molecule
		25.5 Mapping of IETS Signals
		25.6 Summary
		References
	26 Adsorption Sites, Bonding Configurations, Reactions and Mass Transport Surface
		26.1 Surface Techniques Survey
		26.2 IR Measurements of Surfaces and Thin Films
		26.3 Low-Energy Ion Scattering
		26.4 Combining IR, XPS,and LEIS Measurements
		26.5 Conclusions and Outlook
		References
Part G Gas Surface Interaction
	27 Gas Surface Interaction and Surface Reactions
		27.1 The Gas–Surface Interaction
		27.2 Surface Reactions
		27.3 Perspectives
		References
	28 Nonadiabatic Effects in Gas-Surface Dynamics
		28.1 Modeling Gas–Surface Interaction
		28.2 Theory of Electronic Friction in a Free Electron Gas
		28.3 Fundamentals of the Local-Density Friction Approximation
		28.4 The Local-Density Friction Approximation Appliedto Elementary Gas–Surface Processes
		28.5 Conclusion
		References
	29 Self-assembly of Organic Molecules at Metal Surfaces
		29.1 Molecular Engineering of Surfaces
		29.2 Organometallic Compounds and Covalent Bond Networks
		29.3 Noncovalent Bonding
		29.4 Conclusions
		References
	30 Energetics of Adsorption: Single Crystal Calorimetry
		30.1 Methods for Calorimetry
		30.2 Definition of the Heat of Adsorption
		30.3 Experimental Setups
		30.4 Overview of Experimental Results by the Cambridge Group
		30.5 Overview of Experimental Results by the Washington Group
		30.6 Results of Other Research Groups
		30.7 Conclusions
		References
	31 Kinetics of Adsorption, Desorption and Reactions at Surfaces
		31.1 Surface Reaction
		31.2 Desorption with Fast Surface Diffusion
		31.3 Examples
		31.4 Kinetic Lattice-Gas Models
		31.5 Concluding Remarks
		References
	32 State Resolved Sticking Probability in Gas-SurfaceInteraction
		32.1 Effect of Rotational Energy on S
		32.2 Effect of Vibrational Energy on S
		32.3 Conclusions
		References
Part H Chemical Reactions At Surfaces
	33 From Surface Science to Industrial Heterogeneous Catalysis
		33.1 Industrial Chemistry and Catalysis
		33.2 Industrial Heterogeneous Catalysis and Catalysts
		33.3 On the Complexity of Industrial Catalytic Materials
		33.4 Surface Science, Surface Chemistry, and IndustrialHeterogeneous Catalysis
		33.5 Surface Acido-basicity and Heterogeneous Acido-basic Catalysts
		33.6 Solid Catalysts for Oxidation Reactions
		33.7 Solid Catalysts for Hydrogenation and Dehydrogenation Reactions
		33.8 A Case Study: Steam Methane Reforming (SMR)for the Production of Hydrogen
		33.9 Conclusions
		References
	34 Electrochemical Behavior of Single Crystal Electrodeson Model Processes
		34.1 Preparation of Single-Crystal Surfaces
		34.2 Some Remarks About the Experimental Procedures
		34.3 Voltammetric Characterization
		34.4 Electrochemical Behavior of Gold Single-Crystal Surfaces
		34.5 Voltammetry of Platinum Single Crystals
		34.6 Charge Displacement Experiment
		34.7 Stepped Surfaces
		34.8 Potential of Zero Charge
		34.9 Underpotential Deposition of Metals on Single-Crystal Electrodes
		34.10 CO Adsorption and Oxidation on PlatinumSingle-Crystal Electrodes
		34.11 Oxidation of Small Organic Molecules on PlatinumSingle-Crystal Electrodes
		34.12 Concluding Remarks
		References
Part I Current Topics In Surface Science
	35 Selected Topics in Contact Mechanicsand Nanotribology
		35.1 Contact Between Rough Surfaces
		35.2 Macroscopic Sliding Friction
		35.3 Sliding Friction on the Atomic Scale
		35.4 Ultimate Limits of Nanotribology: From Noncontact Friction to Abrasive Nanowear
		35.5 Conclusions
		References
	36 Graphene
		36.1 Structure
		36.2 Growth
		36.3 Graphene on Metal Surfaces
		36.4 Metal Intercalation
		36.5 Chemical Reactivity of Graphene
		36.6 Summary and Perspectives
		References
	37 Silicene
		37.1 The Concept: Freestanding Silicene
		37.2 Silicene Synthesis and Characterization
		37.3 Multilayer Silicene
		37.4 Functionalization and Encapsulation
		37.5 Devices
		37.6 Exotic Forms of Silicon in Zero and One Dimension
		37.7 Perspectives and Conclusion
		References
	38 Cluster-Assembled Carbon Thin Films
		38.1 Supersonic Cluster Beam Deposition
		38.2 Surface Morphology of Cluster-Assembled Carbon Thin Films
		38.3 Cluster-Assembled Carbon Nanocomposites
		38.4 Cluster-Assembled Carbon Thin Films for Energy Applications
		38.5 Conclusions
		References
	39 Nuclear Methods in Surface Science
		39.1 Methods Employing Swift Ion Collisions
		39.2 Accelerators
		39.3 Stopping Power
		39.4 Principles of RBS and ERDA
		39.5 Application of RBS and ERDA
		39.6 Advanced ERDA
		39.7 Outline of HRBS, HERDA, and MEIS
		39.8 Ion Channeling and Blocking in MEIS, HRBS, and RBS
		39.9 Introduction to NRA
		39.10 Application of NRA for H at the Surfaceand in the Subsurface Region
		39.11 Application of NRA for H in Nanoclusters on the Surface
		39.12 Hydrogen Embrittlement Studied by Microbeam NRA
		39.13 NRA to Study Oxide Film Growth
		39.14 Conclusions
		References
	Subject Index




نظرات کاربران