ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Soil Health and Environmental Sustainability: Application of Geospatial Technology

دانلود کتاب سلامت خاک و پایداری محیطی: کاربرد فناوری ژئوفضایی

Soil Health and Environmental Sustainability: Application of Geospatial Technology

مشخصات کتاب

Soil Health and Environmental Sustainability: Application of Geospatial Technology

ویرایش:  
نویسندگان: , , ,   
سری: Environmental Science and Engineering 
ISBN (شابک) : 3031092694, 9783031092695 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 731
[732] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Soil Health and Environmental Sustainability: Application of Geospatial Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سلامت خاک و پایداری محیطی: کاربرد فناوری ژئوفضایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سلامت خاک و پایداری محیطی: کاربرد فناوری ژئوفضایی



توضیحاتی درمورد کتاب به خارجی

This book demonstrates the measurement, monitoring, mapping and modelling of soil pollution and land resources. This book explores state-of-the-art techniques based on open sources software & R statistical programming and modelling in modern geo-computation techniques specifically focusing on the recent trends in data mining/machine learning techniques and robust modelling in soil resources.
Soil and agricultural systems are an integral part of the global environment and human well‐being, providing multiple goods and services essential for people worldwide and crucial for sustainable development. Soil contamination is an environmental hazard and has become a big issue related to environmental health. The challenge of the twenty-first century is to reduce the contaminant load and bring it to below permissible level. The contamination is not only a problem affecting local environments at the place of occurrence but also spreading to other regions because of easy transportation of pollutants. This leads to direct and indirect contamination of land and aquatic systems, surface water and groundwater, inducing significant risks for natural ecosystems. 
In this context, the spatial modelling, prediction, efficient use, risk assessment, protection and management of soil resources in the agriculture system are the key to achieving sustainable development goals and ensuring the promotion of an economically, socially and environmental sustainability future. The aim of this book on soil contaminants and environmental health: application of geospatial technology is to identify the soil and sediment quality, sources of contaminants and risk assessment and focuses on the decision-making and planning point of view through GIS data management techniques.
This book covers major topics such as spatial modelling in soil and sediments pollution and remediation; radioactive wastes, microbiology of soil and sediments, soil salinity and sodicity, pollution from landfill sites, soil erosion and contamination from agricultural activities, heavy metal pollution and health risk; environmental impact and risk assessment, sustainable land use, landscape management and governance, soil degradation and risk assessment, agricultural soil pollution, pollution due to urban activities, soil pollution by industrial effluents and solid wastes, pollution control and mitigation in extreme environments. The content of this book is of interest to researchers, professionals and policy-makers whose work is in soil science and agriculture practices. The book equips with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal and environmental implications.




فهرست مطالب

Preface
Acknowledgments
Contents
Editors and Contributors
Part I Measurement, Monitoring and Mapping of Soil and Land Resources
1 Open-Source Satellite Repository and Geographic Information System (GIS) for Soil Resource Mapping
	1.1 Introduction
	1.2 Spectral Reflectance of the Soil
	1.3 Commonly Used Open Satellite Data
		1.3.1 Low Resolution Satellite Data
		1.3.2 Moderate Resolution Satellite Data
		1.3.3 High Resolution Satellite Data
	1.4 Other Earth Resource Satellites
		1.4.1 Hyperspectral Satellite Systems
		1.4.2 Digital Elevation Model (DEM)
	1.5 Open Sources for World Soil Information
		1.5.1 Open Source GIS Packages and Software
	1.6 Application of RS and GIS in Soil Resource Mapping
	1.7 Conclusion
	References
2 Applicability of Open Source Satellite Data and GIS for Soil Resources Inventorying and Monitoring
	2.1 Introduction
	2.2 Materials and Methods
		2.2.1 Location and extent
		2.2.2 Climate
		2.2.3 Geomorphology
		2.2.4 Geology
		2.2.5 Drainage
		2.2.6 Base Maps and Image Interpretation
		2.2.7 Field Investigations
		2.2.8 Laboratory Characterization of Soils
		2.2.9 Finalization of Soil Map and Other Soil Characteristics Mapping Using GIS
	2.3 Results and Discussion
		2.3.1 Land Utilization/Land Use Land Cover Mapping
		2.3.2 Landform Mapping
		2.3.3 Soil and Soil Site Characteristics Mapping
	2.4 Conclusion
	References
3 Application of Discrete Element Method Simulation in Environmental Modeling
	3.1 Introduction
	3.2 Materials and Methods
		3.2.1 Discrete Element Method
		3.2.2 Simulation Setup
		3.2.3 Soil Sample Preparation
	3.3 Case Study
		3.3.1 Effect of Tire Compaction on Soil
		3.3.2 Effect of Vibro Compaction on the Soil
	3.4 Conclusion
	References
4 Geospatial Techniques and Methods for Sustainability in Agricultural Management
	4.1 Introduction
	4.2 Using Geospatial Techniques for Decision Making in Agriculture
	4.3 Spatial Techniques in Agriculture: Data Acquisition
		4.3.1 Crop Spatial Data
		4.3.2 Detection and Mapping Techniques for Agricultural Soils
	4.4 Geospatial Techniques in Agriculture: Data Treatment and Management zones
		4.4.1 Classical Criteria for Identifying Management zones
		4.4.2 Using Soil–Plant Spatial Relations to Identify Management zones
	4.5 Conclusions
	References
5 Soil and Vegetation in Pachmarhi Biosphere Reserve and Their Correlation
	5.1 Introduction
	References
6 Salt Affected Soils: Global Perspectives
	6.1 Introduction
	6.2 Global Distribution and Occurrence
	6.3 Causes and Drivers for Salinization/Sodification
	6.4 Definition and Characteristics of SAS
		6.4.1 Saline Soil
		6.4.2 Sodic Soil
	6.5 Salt Affected Soils and Crop Production
	6.6 Management Options
		6.6.1 Agronomic Practices for Saline Soil
		6.6.2 Subsurface Drainage (SSD) for Rehabilitation of Continental Saline Soil with a Shallow Water Table
		6.6.3 Land Shaping Technology
		6.6.4 Bio-Drainage
		6.6.5 Gypsum and Alternate Reclamation Technology for Sodic Soil and Water
		6.6.6 Crop Management and Salt-Tolerant Varieties
	6.7 Economic Importance of Salt-Affected Soil World-Wise
	6.8 Conclusions and Way Forward
	References
7 Application of Remote Sensing and GIS Techniques in Assessment of Salt Affected Soils for Management in Large Scale Soil Survey
	7.1 Introduction
	7.2 Development of Salt-Affected Soils
	7.3 Characterization and Identification of Salt-Affected Soils
	7.4 Classification of Salt-Affected Soils
		7.4.1 Saline Soils
		7.4.2 Saline-Sodic Soils
		7.4.3 Sodic Soils
		7.4.4 Distribution of SAS
	7.5 Soil Salinization
		7.5.1 Types of Soil Salinity
		7.5.2 Damage Caused by Soil Salinity
		7.5.3 Socio-economic Impacts of Salinity
		7.5.4 Visual Indicators of Soil Salinity
		7.5.5 Field Assessment of Soil Salinity
		7.5.6 Classes of Soil Salinity and Plant Growth
	7.6 Soil Sodicity
		7.6.1 Visual Indicators of Soil Sodicity
		7.6.2 Field Assessment of Soil Sodicity
		7.6.3 Laboratory Assessment of Soil Sodicity
		7.6.4 Sodicity and Soil Structure
	7.7 Remote Sensing for Soil Affected Soil Mapping
		7.7.1 Remote Sensing Data
		7.7.2 Methodology
		7.7.3 Detection of Soil Salinity by Remote Sensing
		7.7.4 Salinity Mapping and Monitoring
		7.7.5 Delineation of Salt-Affected Soils in India
		7.7.6 Constraints in Remote Sensing of SAS Mapping
	7.8 Management of Salt Affected Soils Using Remote Sensing
	7.9 Conclusion
	References
8 Status and Challenges of Monitoring Soil Erosion in Croplands of Arid Regions
	8.1 Introduction
	8.2 Overview of Methods Used for Monitoring Runoff and Soil Erosion from Arable/Agricultural Lands
		8.2.1 Assessment of Soil Erosion at Different Scales from Agricultural/Arable Land
		8.2.2 Devices and Methods Used for Measurement or Estimation of Soil Erosion
	8.3 Case Study of Soil Erosion Monitoring in an Indian Arid Region
		8.3.1 Overview of Study Area
		8.3.2 Methodology
		8.3.3 Results and Discussion
		8.3.4 Conclusions of the Case Study
	8.4 Challenges and Issues in Regular Monitoring of Soil Erosion in Arid Climate
		8.4.1 High Speed Winds
		8.4.2 Infrequent Rainy Days and Runoff
		8.4.3 Shallow Soil Thickness
		8.4.4 Changing Rainfall Patterns Due to Climate Change
		8.4.5 Unfavorable Soil Workability Conditions
	8.5 Future Needs and Concluding Remarks
	References
9 Application of RUSLE and MUSLE Models to Assess Erosion Sensitivity of a Sub-watershed Using ArcSWAT Interface
	9.1 Introduction
	9.2 Materials and Methods
		9.2.1 Description of Study Area
	9.3 Models
		9.3.1 Revised Universal Soil Loss Equation
		9.3.2 MUSLE Model
	9.4 Methods Used to Estimate Various Model Parameters
		9.4.1 Rainfall Erosivity Factor (R)
		9.4.2 Soil Erodibility Factor (K)
		9.4.3 Soil Erodibility Factor Computation
		9.4.4 Slope Length Factor (L)
		9.4.5 Unit Stream Power Erosion and Deposition (USPED) Model
		9.4.6 Digital Elevation Model (DEM)
		9.4.7 Slope Steepness Factor (S)
		9.4.8 Cover Management Factor/Vegetative Cover Factor (C)
		9.4.9 Land Use/Land Cover Map
		9.4.10 Conservation/Support Practice Factor (P)
	9.5 Gross Soil Erosion Estimation
	9.6 Erosion Susceptibility Map
		9.6.1 ArcSWAT: An ArcGIS Extension
	9.7 Preparation of Arcswat Input Data
		9.7.1 Land Use/Land Cover Database Input Files
		9.7.2 Soil Database Input Files
		9.7.3 ArcSWAT Weather Data Input Files
	9.8 ArcSWAT Model Operation
		9.8.1 SWAT Project Set-Up
		9.8.2 Watershed Delineator
		9.8.3 Hydrologic Response Unit (HRU) Analysis
		9.8.4 Write Input Tables
		9.8.5 Edit SWAT Input
		9.8.6 SWAT Simulation
		9.8.7 SWAT Model Calibration
		9.8.8 Collection of Suspended Sediment Samples
		9.8.9 Sediment Concentration
		9.8.10 SWAT Model Validation
		9.8.11 Model Evaluation Statistics
		9.8.12 Sediment Delivery Ratio
	9.9 Results and Discussion
		9.9.1 Components of RUSLE Model
		9.9.2 Soil Erodibility Factor (K)
		9.9.3 Crop/Cover Management Factor (C)
		9.9.4 Gross Soil Erosion Using RUSLE Model
		9.9.5 SWAT Model Simulation Results
	9.10 Conclusion
	References
10 Delineation of Irrigation Management Zones Using Geographical Weighted Principal Component Analysis and Possibilistic Fuzzy C-Means Clustering Approach
	10.1 Introduction
	10.2 Materials and Methods
		10.2.1 Site Description
		10.2.2 Soil Sampling and Analysis
		10.2.3 Descriptive and Geostatistical Analysis
		10.2.4 Principal Components Analysis and Fuzzy Clustering
	10.3 Results and Discussion
		10.3.1 Descriptive Statistics of Soil Hydro-Physical Properties
		10.3.2 Relationship Among Soil Hydro-Physical Properties
		10.3.3 Geostatistical Interpolation
		10.3.4 Determining Clustering Variables for Irrigation Management Zones
		10.3.5 Delineating Irrigation Management Zones
		10.3.6 Application of IMZ Results
	10.4 Conclusions
	References
Part II Geospatial Modeling  and Risk Assessment
11 Soil Quality Assessment: Integrated Study on Standard Scoring Functions and Geospatial Approach
	11.1 Introduction
	11.2 Materials and Methods
		11.2.1 Site Description
		11.2.2 Field and Laboratory Procedures
		11.2.3 Integrated Quality Index (IQI) and Weight Assignment
		11.2.4 Spatial Variability of an Integrated Quality Index (IQI)
	11.3 Results and Discussion
		11.3.1 Indicators Among Different Depths
		11.3.2 Minimum Data Set Selection
		11.3.3 Weight Assignment Values of Every Soil Quality Indicator
		11.3.4 Integrated Quality Index (IQI) Calculation
		11.3.5 Spatial Analyses of Soil Quality Index (SQI)
	11.4 Conclusions
	References
12 Spatial Pattern Analysis and Identifying Soil Pollution Hotspots Using Local Moran's I and GIS at a Regional Scale in Northeast of Iran
	12.1 Introduction
	12.2 Study Area
	12.3 Methods
		12.3.1 Sampling and Analysis
		12.3.2 Statistical Analysis
	12.4 Results
		12.4.1 Exploratory Analysis of Soil Variables
		12.4.2 Pearson’s Correlation
		12.4.3 Spatial Autocorrelation
		12.4.4 Cluster Analysis
		12.4.5 Spatial Distribution
	12.5 Discussion
	12.6 Conclusion
	References
13 Soil Quality Assessment in Hilly and Mountainous Landscape
	13.1 Introduction
		13.1.1 Soil Quality
	13.2 Soil Quality Indicators
		13.2.1 Soil Quality Indicators Relevant to the Hilly and Mountainous Region
		13.2.2 Soil Organic Carbon as an Indicator of Soil Quality
	13.3 Methods of Assessing Soil Quality
		13.3.1 Index Method
		13.3.2 Multi-criteria Method
		13.3.3 Modelling Approach
		13.3.4 Geo-spatial Applications in Soil Quality Mapping
		13.3.5 Novel Approach
	13.4 Case Study: Soil Quality Assessment in a Watershed of Himalayan Region-India
		13.4.1 Study Area
		13.4.2 Methodology
		13.4.3 Results and Discussion
		13.4.4 Salient Findings
	13.5 Summary and Conclusion
	References
14 Soil Pollution Due to Sewage Sludge and Industrial Effluents
	14.1 Introduction
	14.2 Soil Pollution Due to Industry Effluents
	14.3 Sources of Industry Causing Soil Pollution
		14.3.1 Tannery Industry
		14.3.2 Paper Mills Industry
		14.3.3 Textile Industry
		14.3.4 Distillery Effluents
	14.4 Scenario of Sewage Sludge Generation in World and India
	14.5 Source and Types of Sewage
		14.5.1 Domestic Source
		14.5.2 Commercial Source
		14.5.3 Urban Source
	14.6 Sewage Sludge as a Source of Soil Pollutant
		14.6.1 Sewage Sludge as a Source of Chemical Contaminant
		14.6.2 Persistent Organic Pollutant
	14.7 Microplastics in Sewage Sludge
		14.7.1 Effect of Microplastics on Soil Physical and Chemical Property
	14.8 Conclusion
	References
15 Spatial Distribution and Radiological Risk Quantification of Natural Radioisotopes in the St. Martin’s Island, Bangladesh
	15.1 Introduction
	15.2 Materials and Methods
		15.2.1 Area of Interest
		15.2.2 Sampling and Sample Processing
		15.2.3 Analytical Procedure
		15.2.4 Data Presenting Processes
	15.3 Results and Discussion
		15.3.1 Distribution of Radionuclides
		15.3.2 Radiological Risk Assessment
		15.3.3 Correlation Matrix Analysis
	15.4 Conclusion
	References
16 Risk Assessment of Heavy Metal Contaminations in Soil and Water Ecosystem
	16.1 Introduction
	16.2 Heavy Metal Sources
	16.3 Natural Sources of Heavy Metals
	16.4 Anthropogenic Sources of Heavy Metals
	16.5 Heavy Metals in Soil
	16.6 Heavy Metals in Water
	16.7 Impact of Soil Pollution Through Heavy Metals on Human Being and Other Living Organisms
	16.8 Impact of Water Pollution Through Heavy Metals on Human Being and Other Living Organisms
	16.9 Human Health Risk Assessment
	16.10 Environmental Legislation
	16.11 Management of Heavy Metal Pollution in Soil and Water
	16.12 Conclusion
	References
17 Microplastics, Their Toxic Effects on Living Organisms in Soil Biota and Their Fate: An Appraisal
	17.1 Introduction
	17.2 Microplastic Occurrence, Source, and Properties
	17.3 Methods for Detection and Quantification of Microplastics
	17.4 Advance Methods
	17.5 Effect on Physical and Chemical Properties of Soil
	17.6 Effect on Soil Fauna
		17.6.1 Nematode
		17.6.2 Arthropod
		17.6.3 Mites
		17.6.4 Annelida
		17.6.5 Isopods
		17.6.6 Effect on Flora
		17.6.7 Effect on Microbes
		17.6.8 Impact on Nitrogen Cycle
		17.6.9 Other Impact of Plastics on Vertebrates
	17.7 Future Research Prospects
	17.8 Conclusion
	References
Part III  Soil Health  and Sustainable Management
18 Sustainable Land Use, Landscape Management and Governance
	18.1 Introduction
	18.2 Paradigm Shift in Managing Land-Based Resources
	18.3 Alternatives and Approaches for Achieving Sustainability
	18.4 Regenerative Land Management—A Restorative Approach
	18.5 Conclusions
	References
19 Characterization and Mapping of Soils for Sustainable Management Using Geospatial Techniques: A Case Study of Northeastern Bihar, India
	19.1 Introduction
	19.2 Study Area
	19.3 Materials and Methods
		19.3.1 Preparation of Base Maps
		19.3.2 Ground-Truth Verification
		19.3.3 Soil Sampling and Analysis
		19.3.4 Soil Classification
		19.3.5 Development of Soil Mapping Legend
		19.3.6 Land Evaluation
	19.4 Results and Discussion
		19.4.1 Land Use/Land Cover
		19.4.2 Landform and Landscape Ecological Units (LEUs)
		19.4.3 Soil-Landform Relationship
		19.4.4 Soil Mapping
		19.4.5 Soil Survey Interpretation
		19.4.6 Land Capability Classification
		19.4.7 Land Irrigability Classification
		19.4.8 Soil Suitability for Crops
		19.4.9 Identification of Alternate Land Use Options Based on Problems and Potentials of Soils
	19.5 Conclusions
	References
20 Soil Pollution by Industrial Effluents, Solid Wastes and Reclamation Strategies by Microorganisms
	20.1 Introduction
	20.2 Nature, Composition & Characteristics of Industrial Effluent
	20.3 Sources, Composition & Nature of Solid Wastes
	20.4 Impact of Industrial Effluent & Solid Waste on Soil Health
	20.5 Reclamation of Soil by Microbial Remediation of Industrial Effluent & Solid Waste Contaminants
		20.5.1 Microbial Remediation of Heavy Metals
		20.5.2 Remediation of Organic Pollutants
	20.6 Conclusion & Future Aspects
	References
21 Pollutants Bioremediation Using Biosurfactants: A Novel Approach for Improving Soil Health
	21.1 Introduction
		21.1.1 Physiochemical Properties
		21.1.2 Classification
	21.2 Synthesis of Precursor Molecule for Biosurfactants Production
		21.2.1 Microbial Synthesis
		21.2.2 Biosurfactant Producing Microbial Strains
	21.3 Environmental Bioremediation and Soil Health
	21.4 Bioremediation Mechanism
	21.5 Conclusion and Future Directions
	References
22 Agroforestry Systems for Carbon Sequestration and Food Security: Implications for Climate Change Mitigation
	22.1 Introduction
	22.2 Carbon Inputs and Outputs Are Used to Calculate Carbon Stocks
	22.3 Approaches for Carbon Sequestration
		22.3.1 Prospects for the Entire World
		22.3.2 For Timber Production and Carbon Sequestration, Plantations Are Used
		22.3.3 Forestland Rehabilitation
	22.4 As a Prospective Abatement Approach, Agroforestry
	22.5 Carbon Sequestration Through Agroforestry System
	22.6 Food Availability and Reducing Carbon Emissions Have a Synergistic Impact
	22.7 What Are the Potential Consequences for Rural Livelihoods?
	22.8 Sustainable Livelihoods
	22.9 Is It Possible for Rural People to Offer Carbon Credits Through Their Agricultural and Forestry Systems?
	22.10 Can Carbon Offsets Help Residents in Rural Areas?
	22.11 Livelihood Impacts of Carbon Projects
		22.11.1 Significance of the Study
		22.11.2 Short-Term Livelihood Impacts on Community Activities and Income
		22.11.3 Long-Term Livelihood Impacts on Communities
		22.11.4 Adaptation
		22.11.5 Recommendations
	22.12 Conclusions
	References
23 Alley Cropping Agroforestry System for Improvement of Soil Health
	23.1 Introduction
	23.2 Alley Cropping: Soil Properties
		23.2.1 Soil Physical Properties
		23.2.2 Soil Chemical Properties
		23.2.3 Soil Biological Properties
	23.3 Alley Cropping and Soil Fertility/Nutrient Cycling
		23.3.1 Nitrogen
		23.3.2 Phosphorus
		23.3.3 Potassium
	23.4 Alley Cropping: Soil Carbon Stock and Sequestration
	23.5 Conclusion
	References
24 Performance of Rice-Lentil Cropping Under Different Tillage Influencing Soil Suppressiveness: A Short Term Approach
	24.1 Introduction
	24.2 Materials and Method
		24.2.1 Filled Experiments and Soil Sampling
		24.2.2 Soil Organic Carbon and Microbial Enzymatic Activity Analysis
		24.2.3 Soil Microbial Community Assay for Culturable Microorganisms
		24.2.4 Culture Independent Approach to Obtain the Abundance Label of Pseudomonas, Bacillus and Actinomyces in the Experimental Soil
		24.2.5 In-Vitro Antagonistic Activity of the Native Isolates Against Fungal Pathogen Sclerotim Rolfsii
		24.2.6 In-Vitro Soil Suppressive Activity on Sclerotium Rolfsii
		24.2.7 Enzymatic Activity of Isolated Antagonist Microorganisms
		24.2.8 Secondary Metabolites Production of Isolated Antagonist Microorganisms
		24.2.9 DNA Extraction and Gel Electrophoresis of the Isolated Antagonist Microorganisms
		24.2.10 Lentil Seed Germination Assay Supplemented with Isolated Microorganisms
	24.3 Result and Discussion
		24.3.1 Disease Infection and Infectious Loci Affected by Tillage
		24.3.2 Soil Suppressivity Dynamics Following the Tillage Practices
		24.3.3 Soil Microbiological Parameter Influence by Tillage
		24.3.4 Soil Pseudomonas, Bacillus and Actinomyces Abundance Obtain from Culture Independent Quantification by QRT-PCR (on the Basis of Ct Value)
		24.3.5 Dynamics of Soil Microbial Enzymatic Activity Affected by Different Tillage Management Practices
		24.3.6 Pearson Correlation Among All the Soil Microbiological, Chemical and Biochemical Parameters with Disease Incidents Percentage
		24.3.7 Principal Components Analysis of All the Variables (Soil Parameters, Disease Incidence Percentage and Soil Suppressive Index)
		24.3.8 Biocontrol Potentiality and Biochemical Quantification Observed from the Different Native Biocontrol Bacteria Isolated from the Above Mention Experimental Field
		24.3.9 Plant Growth Promotion (PGPR) Activity of Different Potential Native Biocontrol Bacteria Isolated from the Above Mention Experimental Field
	24.4 Summary and Conclusion
	24.5 Future Scope of Research of This Work is that,
	References
25 Role of Soil Microbes in Soil Health and Stability Improvement
	25.1 Introduction
	25.2 Soil Structure
	25.3 Soil Microbes Overview
		25.3.1 Bacteria
		25.3.2 Other Microbes
	25.4 Enhancement of Soil Structure
	25.5 Indicators of Soil Health
	25.6 Soil Microbes and Their Types
		25.6.1 Disease Causing Microbes
		25.6.2 Biocontrol Agents Inhabiting in Soil (Resident Biocontrol Agents)
	25.7 Soil Microbes Can Be Classified as Follows
		25.7.1 On the Basis of Microbial Function
		25.7.2 On the Basis of Microbial Activity
	25.8 Characteristic Features of Soil-Inhabiting PGPR
		25.8.1 Antibiotic Production in Soil
		25.8.2 Hormone Production
		25.8.3 Phosphate Solubilisation
		25.8.4 Nitrogen Fixation
	25.9 Role of Soil Microbes in Disease Control (Suppression).
	25.10 Beneficial Effects of Rhizobacteria
	25.11 Future Outlook
	25.12 Conclusion
	References
26 Rhizospheric Soil–Plant-Microbial Interactions for Abiotic Stress Mitigation and Enhancing Crop Performance
	26.1 Introduction
	26.2 The Rhizosphere
		26.2.1 Rhizospheric Microbiome Dynamics
		26.2.2 Soil Characteristics of Rhizosphere
		26.2.3 Interactions between Plant and Microbes in the Rhizosphere
	26.3 Plant Growth-Promoting Rhizobacteria
		26.3.1 Nitrogen Fixing Bacteria
		26.3.2 Nutrient Solubilising Bacteria
	26.4 Role of PGPRs in Mitigating Stress
		26.4.1 Salt Stress
		26.4.2 Drought Stress
		26.4.3 Heavy Metals (HM) Tolerance
	26.5 Conclusions
	References
27 Strategies for Heavy Metals Remediation from Contaminated Soils and Future Perspectives
	27.1 Introduction
	27.2 Methodologies
		27.2.1 Physicochemical Approaches
		27.2.2 Biological Approaches
	27.3 Results and Discussion
		27.3.1 Phyto-Remediation of Heavy Metals
		27.3.2 Bioremediation Using Organic Residues and Microorganisms
		27.3.3 Plant-Bacteria-Metal Interaction for Phytoremediation
		27.3.4 Plant-Growth Promotion Mechanism
		27.3.5 Alteration of Plant Metal Uptake Mechanism
	27.4 Conclusions and Future Perspective
	References
28 Phytoremediation of Arsenic Polluted Soil by Brassica Nigra L.
	28.1 Introduction
	28.2 Materials and Methods
		28.2.1 Collection and Processing of the Soil Samples
		28.2.2 In Vivo Culture and Treatment of Arsenic on Brassica Nigra L. (Mustard)
		28.2.3 Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive X-Ray Spectroscopy (EDAX) Study
	28.3 Results and Discussion
	28.4 Conclusion
	References
29 π-π Interaction: Defining the Role and Relevance in Environmental Detoxification of Heavy Metals from Soil
	29.1 Introduction
	29.2 Soil Environment
	29.3 Major Soil Pollutants
	29.4 Soil-Pollutants Interactions and Role of Complexation
	29.5 Cation-π Interaction and Host–Guest Complexation
	29.6 Sorption Behavior and π-π Interactions in Soil Remediation
	References
30 Assessment of Ecological and Human Health Risk of Soil Heavy Metals Pollution: Study from Chotanagpur Plateau Region, India
	30.1 Introduction
	30.2 Materials and Methods
		30.2.1 Study Area
		30.2.2 Collection of Soil Samples and Its Procedures
		30.2.3 Quantification of Soil Heavy Metals (HM) Pollution
	30.3 Results
		30.3.1 Distribution of Soil Heavy Metals (HM)
		30.3.2 Importance Evaluation of Various Sources
		30.3.3 Assessment of Human Health Risk (HHR) of Non-carcinogenic Type
	30.4 Discussion
	30.5 Possible Remediation Strategies to Control Ecological and Human Health Risk from Soil Heavy Metal Pollution
	30.6 Conclusion
	References
31 Bioremediation Approaches for Curbing the Potential of Toxic Element for Sustainable Agriculture
	31.1 Introduction
	31.2 Toxic Elements in Agricultural Soil
		31.2.1 Inorganic Toxic Elements
		31.2.2 Organic Toxic Element
		31.2.3 Pesticides
		31.2.4 Dye Pollutants
		31.2.5 Antibiotics
	31.3 Impact of Inorganic Pollutants on Soil and Plants
		31.3.1 Soil
		31.3.2 Plants
	31.4 Bioremediation Strategies for Sustainable Agriculture
		31.4.1 Plant Mediated Remediation of Heavy Metal Polluted Soil
		31.4.2 Beneficial Interaction Between Micro-plant: Toxic Element Remediation
	31.5 Conclusion
	References
Index




نظرات کاربران