ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications

دانلود کتاب مواد هوشمند در ساخت افزودنی، جلد 2: مکانیک چاپ چهار بعدی، مدل‌سازی و کاربردهای مهندسی پیشرفته

Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications

مشخصات کتاب

Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications

دسته بندی: مواد
ویرایش:  
نویسندگان:   
سری: Additive Manufacturing Materials and Technologies Series 
ISBN (شابک) : 0323954308, 9780323954303 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 466 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 مگابایت 

قیمت کتاب (تومان) : 59,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد هوشمند در ساخت افزودنی، جلد 2: مکانیک چاپ چهار بعدی، مدل‌سازی و کاربردهای مهندسی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications
Copyright
Dedication
Contents
Contributors
Editors biography
Preface
Acknowledgments
Chapter 1: 4D printing mechanics, modeling, and advanced engineering applications
	Introduction
	4D printing electro-induced shape memory polymers
	4D printing modeling using ABAQUS: A guide for beginners
	4D printing modeling via machine learning
	4D-printed pneumatic soft actuators modeling, fabrications, and control
	4D-printed auxetic structures with tunable mechanical properties
	4D-printed shape memory polymers: modeling and fabrication
	4D textiles-Materials, processes, and future applications
	Closed-loop control of 4D-printed hydrogel soft robots
	Hierarchical motion of 4D-printed structures using the temperature memory effect
	Manufacturing highly elastic skin integrated with twisted coiled polymer muscles: Toward 4D printing
	Multimaterial 4D printing simulation using grasshopper plugin
	Origami-inspired 4D RF and wireless structures and modules
	Shape-reversible 4D printing aided by shape memory alloys
	Variable stiffness 4D printing
	References
Chapter 2: 4D printing electro-induced shape memory polymers
	Introduction
	Materials, working principle, and similar structures in 4D printing
		4D printing with FDM
		Printing parameters and their influence on deformation of PLA
	Integration of conductive PLA
		Materials and equipment
		Electrical contacting of CPLA
		Printing parameter influence on resistance
	Investigation of SMP structures
		Design of SMP structure
		Manufacturing of SMP structures
		Measuring setup
		SMP structure behavior at different activation voltages
		Conductive layer placement influence on the performance
		Free bending of SMP structures
		Blocking force of SMP structures
	Conclusions
	Acknowledgments
	References
Chapter 3: 4D printing modeling using ABAQUS: A guide for beginners
	Introduction
	Methodology
		4D printing mechanism and design
		Modeling of thermo-mechanical 4D-printed structure
		Heat generation and temperature rise due to NIR light
		FEM model of the thermal-mechanical coupling in ABAQUS
	Results and discussions
	Conclusion
	References
Chapter 4: 4D printing modeling via machine learning
	Introduction
	Methodology
		Fabrication
		Analytical model
	FEM modeling using hyperplastic material constitutive laws
		Training data acquisition from FEM
	Results and discussions
		Initial analysis of the data
		Linear regression
		Machine learning modeling using artificial neural network
		Layer configurations analysis
			Activation functions analysis
		4D-printed soft actuator shape classification using ML
	Discussions
	Conclusion
	References
Chapter 5: 4D-printed pneumatic soft actuators modeling, fabrication, and control
	Introduction
	4D-printed pneumatic soft actuators
		Types
		Modeling
		Materials
		Fabrication
		Sensing and control
		Capabilities
			Self-healing properties and fail-safe features
			Scalability and customizability
			Modularity
			Multimodal and programmable actuation
		Applications
			Soft locomotion robots
			Soft grippers and parallel manipulators
			Soft artificial muscles
			Soft assistive wearable and medical devices
	Discussion
		Challenges of 4D-printed pneumatic soft actuators
			Portability
			Noise and vibration
			3D-printing materials and printing time
			Mass production and lifetime
		Requirements for 4D-printed pneumatic soft actuators
	Conclusion
	References
Chapter 6: 4D-printed structures with tunable mechanical properties
	Introduction
	Shape memory polymer material
	Stability and functional properties of 4D-printed specimens
		Geometric stability following heat exposure
		Stress-free shape recovery
		Tunable mechanical properties
			Tunability in simple structures
			Tunability in complex periodic structures
			The development of heterogeneities-Local response
	Summary and concluding remarks
	References
Chapter 7: 4D-printed shape memory polymer: Modeling and fabrication
	Introduction
	4D printing programming
	Constitutive equations
		Thermoviscoelastic approach
		Phase transformation approach
	Fabrication and modeling 4D-printed elements
		Materials
		4D printing elements
		Finite element modeling
	Case studies
		Self-folding structures
			Gripper actuator
			Self-folding smart composites
		Adaptive dynamic structures
			Wave propagation formulation
			Design adaptive periodic structures
			Adaptive diagonal structure
			Adaptive parallel structure
	Conclusion
	References
Chapter 8: 4D textiles: Materials, processes, and future applications
	Introduction
	State of the art
		Textile
		Fabric
	Printing method
		Prestressing technologies
		Rotational symmetric substrate
		Print parameters
		Interfaces
		Model
	Form giving through surface tessellation
	Applications
		Finger
		Orthosis
	Conclusion and outcomes
	References
Chapter 9: Closed-loop control of 4D-printed hydrogel soft robots
	Introduction
	Motion mechanism of the soft actuator
	Materials and methods
		Fabrication of the actuator
		Optimizing the printing parameters
	Results and discussions
		Optimization of the 3D printing parameters
		Characterizations
		Mechanical tests results
		Swelling measurements
		Experimental setup and image processing
		Ionic strength effect
		Geometrical effects
		Actuation performance
		Electro-chemo-mechanical model of the 3D-printed polyelectrolyte actuator
		Controller design
		T-S fuzzy system formulations
	Conclusion
	References
Chapter 10: Hierarchical motion of 4D-printed structures using the temperature memory effect
	Introduction
	Temperature memory effect: Basics and literature review
		Description
		Experimental testing
		Modeling and simulation
		Exploitation of the temperature memory effect toward applicative examples
	Experimental testing
		Testing protocol
			Preliminary experimental activity to assess the possibility to exploit the temperature memory effect
			Experimental activity to evaluate and model shape memory response for sequential SMEs
		Results of the screening protocol to assess the possibility to exploit the TME
			Thermomechanical testing
			Mechanical testing
		Results of the testing protocol based on the possibility to exploit the TME
		Results of the experimental activity for the generation of input data for the numerical simulation
	Constitutive modeling
		Model formulation
		Identification of model parameters
	Case study
	Conclusions and perspectives
	Acknowledgments
	References
Chapter 11: Manufacturing highly elastic skin integrated with twisted and coiled polymer muscles: Toward 4D printing
	Introduction
	Materials
		TCP
		Silicone
	Manufacturing
	Results and discussion
	Conclusion
	References
Chapter 12: Multimaterial 4D printing simulation using a grasshopper plugin
	Introduction
	Computational design for 4D printing
		Rationales and theoretical background
		The proposed tool: VoxSmart
	Case studies
		Modeling and simulation of known material distributions
			Bimaterial beam
			Hydrogel actuator
			Magnetostrictive actuator
		Material distribution generation
			Attempt to retrieve a known distribution
			Distribution computation with enforced symmetry and initial population
	Conclusion and future work
	Appendix: The distribution Computation component
	References
Chapter 13: Origami-inspired 4D tunable RF and wireless structures and modules
	Introduction
		Inkjet-printing technologies
		Miura-Ori tessellation
		Frequency selective surfaces
	Origami-inspired inkjet-printed FSS structures
		Fabrication process
		Results and discussions
	Fabrication process of 4D-printed origami-inspired RF structures
		3D-printing of the substrate
		Inkjet-print SU-8 buffer layer
		Inkjet-print the conductive layer
	4D-printed origami-inspired frequency selective surfaces
	4D-printed chipless RFID pressure sensors for WSN applications
		4D-printed planar pressure sensor using metamaterial absorber
		4D-printed planar pressure sensor using substrate integrated waveguide (SIW) technology
	4D-printed origami-inspired deployable and reconfigurable antennas
		4D-printed one-shot deployable dielectric reflectarray antenna for mm-wave applications
		Liquid-metal-alloy microfluidic-based 4D-printed reconfigurable origami antennas
	Conclusion
	References
Chapter 14: Shape-reversible 4D printing aided by shape memory alloys
	Introduction
	Materials and methods
		Design of actuators
		Experimental procedure
	Simulation of actuation cycle
	Numerical and experimental results
	Conclusions
	References
Chapter 15: Variable stiffness 4D printing
	Introduction
	Design and working principle
		Single-material actuators
			Variable infill percentages
			Variable infill patterns
			Patterns as hinges
		Multimaterial actuators
	Fabrication process and experimental setup
	Results and discussion
		Material properties
		Single-material actuators
			Variable infill percentages
			Variable infill patterns
			Patterns as hinges
		Multimaterial actuators
	Discussion
	Conclusion
	Acknowledgment
	References
Index
Back Cover




نظرات کاربران