دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Michael Bortz. Norbert Asprion
سری:
ISBN (شابک) : 9780323850438
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: [428]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 Mb
در صورت تبدیل فایل کتاب Simulation and Optimization in Process Engineering. The Benefit of Mathematical Methods in Applications of the Chemical Industry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبیه سازی و بهینه سازی در مهندسی فرآیند. مزایای روش های ریاضی در کاربردهای صنایع شیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
\\\"در سالهای اخیر پیشرفت قابل توجهی با بکارگیری روش های ریاضی در شبیه سازی و بهینه سازی فرآیند حاصل شده است که منجر به پیشرفت های قابل توجهی در طراحی و بهره برداری از کارخانه های تولید صنعتی شده است. شبیه سازی و بهینه سازی در مهندسی فرآیند: مزایای روش های ریاضی در کاربردهای صنعت شیمی نمونه هایی را گرد هم می آورد که در آن انتقال موفقیت آمیز پیشرفت های انجام شده در شبیه سازی و بهینه سازی ریاضی منجر به نوآوری هایی در صنعت شده است که سود قابل توجهی ایجاد کرده است. استفاده شده، نحوه پیادهسازی آنها در صنعت، موانعی که باید برطرف شوند و چگونه سود ایجاد میکنند - اغلب فراتر از آنچه در ابتدا انتظار میرفت. این کتاب برای مهندسان شیمی، مهندسین فرآیند و کارکنان تحقیق و توسعه در صنعت فرآیند مفید خواهد بود.
\"In recent years remarkable progress has been made by applying mathematical methods in process simulation and optimization, resulting in significant improvements in the design and operation of industrial production plants. Simulation and Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical Industry brings together examples where the successful transfer of progress made in mathematical simulation and optimization has led to innovations in industry that created substantial benefit. Containing introductory accounts on scientific progress has been transferred to innovations that delivered a measurable impact, covering details of the methods used, how they were implemented in industry, which hurdles had to be overcome and how they created benefit - often beyond what had first been expected. With each chapter bringing together expertise from academia and industry, this book is unique in providing verifiable insights. This book will be useful for chemical engineers, process engineers, and research and development staff in the process industry.\" --
Front Cover Simulation and Optimization in Process Engineering: The Benefit of Mathematical Methods in Applications of the Chemical In ... Copyright Contents Contributors Preface Chapter 1: Prediction and correlation of physical properties including transport and interfacial properties with the PC-S ... 1. Model equations of PC-SAFT 2. Parameterization 2.1. Pure-component parameters 2.2. Binary interaction parameters 3. Group-contribution methods for PC-SAFT 4. Transport properties 5. Interfacial properties References Chapter 2: Dont search-Solve! Process optimization modeling with IDAES 1. Introduction 1.1. Optimization evolution from systematic search to direct solution 2. Solution algorithms and optimization models 3. Advanced optimization for differential-algebraic applications 3.1. Complexity of dynamic optimization strategies 4. The IDAES optimization modeling software platform 5. Carbon capture optimization case study 5.1. Optimization problem formulation 5.2. Problem initialization and implementation 6. Conclusions and future perspectives Acknowledgments References Chapter 3: Thinking multicriteria-A jackknife when it comes to optimization 1. Introduction 1.1. Short account on multicriteria optimization 2. Process design 2.1. Continuous design variables 2.2. Discrete alternatives 2.3. The impact of uncertainties 2.4. Extension to optimal control 3. Model adjustment, model comparison and model-based design of experiments 4. Decision support Acknowledgments References Chapter 4: Integrated modeling and energetic optimization of the steelmaking process in electric arc furnaces: An industr ... 1. Introduction 2. Electric arc furnace process model 2.1. Hybrid EAF process model 2.1.1. Model dynamics 2.1.2. The electric arc model 2.1.3. Radiative heat exchange from the electric arc 2.1.4. Monte Carlo calculation of the view factors 2.1.5. Oxy-fuel burners 2.1.6. Combustion of coal 2.1.7. Oxidation of metals 2.1.8. Molten metal splashing 3. Dynamic optimization of the melting profiles 3.1. Problem statement 3.2. A general formulation of the dynamic optimization problem 3.3. Formulation of the dynamic optimization problem of the EAF process 4. Solution using control vector parametrization 4.1. Numerical solution of the model 4.2. Termination conditions 4.3. Model validation and parameter estimation 4.4. Numerical solution of the optimization problem 4.5. Batch time constraint 5. Results and discussions 5.1. Numerical case study 5.1.1. Batch simulation 5.1.2. Batch optimization 5.2. Results for the real industrial process 6. Conclusions References Chapter 5: Solvent recovery by batch distillation-Application of multivariate sensitivity studies to high dimensional mul ... 1. Introduction 1.1. Separation of acetone and methanol 1.2. Continuous separation processes 1.3. Batch processes for separation 2. Problem definition 2.1. Product specifications and constraints 2.2. Description of the plant 3. Literature review 4. Methodology 4.1. Heuristics for the selection of a suitable multipurpose plant 4.2. Tool for running flowsheet simulations 4.3. Algorithms for optimizing flowsheet simulations 4.4. Tool for running multivariate sensitivity studies 5. Set up of the flowsheet simulation 5.1. Thermodynamic models 5.2. Screening model 5.2.1. Number of equilibrium trays 5.2.2. Heat duty and molar vapor flow 5.2.3. Design variables 5.3. Low-fidelity model 5.4. High-fidelity model 5.4.1. Heat exchanger models 5.4.2. Hydraulic column model 5.4.3. Liquid hold-up model 5.4.4. Flow control model 6. Results 6.1. Screening model 6.1.1. Highest possible acetone concentration in distillate 6.1.2. Impact of the design variables 6.2. Low-fidelity model 6.2.1. Acetone recovery 6.2.2. Methanol recovery 6.2.3. Water purification 6.2.4. Consecutive simulation of all steps 6.3. High-fidelity model 6.3.1. Applying the low-fidelity model results 6.3.2. Trajectory and switch point tuning 6.4. Economic evaluation 7. Summary References Chapter 6: Modeling and optimizing dynamic networks: Applications in process engineering and energy supply 1. Introduction 2. AD-Net 3. Applications in energy supply 3.1. Power transmission 3.2. District heating 4. Applications in batch distillation 4.1. Forward simulation 4.2. Parameter identification 4.3. Optimal control 5. Conclusion Acknowledgment References Chapter 7: The use of digital twins to overcome low-redundancy problems in process data reconciliation 1. Introduction 2. Data reconciliation 2.1. Variable classification 2.2. Steady-state data reconciliation (DR) 2.3. Gross error detection 2.4. Gross error effect and how to handle 2.5. Gross error detection: Statistical methods 2.6. GE statistical detection algorithms 2.7. Numerical method for low-redundant system 3. Clever mean and clever variance (cm and cv) 4. Median and mad 4.1. Dynamic data reconciliation 4.2. Moving time-window approach 4.3. Solution of DDR with orthogonal matrix 4.4. Implementation and the role of digital twin 5. Industrial case study: Itelyum Regeneration amine washing unit 5.1. Process description 5.2. Assumptions 6. Results 6.1. Steady-state data reconciliation results discussion 6.2. Gross error detection results discussion 6.3. Dynamic data reconciliation case study: Amine tank dynamics 7. Conclusions 7.1. Steady-state data reconciliation 7.2. Dynamic data reconciliation (DDR) Acknowledgments References Chapter 8: Real-time optimization of batch processes via optimizing feedback control 1. Introduction 2. Representation of batch processes 2.1. Distinguishing features 2.2. Mathematical models 2.3. Static view of a batch process 3. Numerical optimization of batch processes 3.1. Problem formulation: Dynamic optimization 3.2. Reformulation of a dynamic optimization problem as a static optimization problem 3.3. Batch-to-batch solution: Static optimization 3.4. Effect of plant-model mismatch 4. Feedback-based optimization of uncertain batchprocesses 4.1. Offline activity: Determine the feedback structure 4.1.1. Characterization of the solution 4.1.2. Design of the feedback structure 4.2. Real-time activities: Implement feedback control 4.2.1. Within-batch feedback 4.2.2. Batch-to-batch feedback 5. Illustrative example: Batch distillation column 5.1. Industrial batch distillation column 5.2. Process model 5.3. Input parameterization of the impurity fraction 5.4. Control design and performance 5.4.1. Constraint tracking 5.4.2. NCO tracking 5.4.3. Practical aspects 6. Conclusions References Chapter 9: On economic operation of switchable chlor-alkali electrolysis for demand-side management Abbreviations 1. Introduction 2. Operational mode switching of chlor-alkali electrolysis 3. Mathematical formulation for optimal sizing and operation of switchable chlor-alkali electrolysis 3.1. Operational mode transition 3.2. Mass balance 3.3. Power demand 3.4. Ramping constraints 3.5. Cost function 4. Case study 4.1. Optimal operational behavior of switchable chlor-alkali electrolysis 4.2. Comparison of switchable chlor-alkali electrolysis to other flexibility options 4.3. Simultaneous optimization of plant oversizing and operation 5. Conclusion Acknowledgments References Chapter 10: Optimal experiment design for dynamic processes 1. Introduction 2. Optimal experiment design for model structure discrimination 2.1. OED/SD in practice 3. Optimal experiment design for parameter estimation 3.1. Computing parameter variance-covariance matrix 3.1.1. Fisher information matrix approach 3.1.2. Direct mapping through parameter estimation 3.1.3. Other computational approaches to approximate variance-covariance matrix 3.2. OED/PE as an optimal control problem 3.2.1. Optimization criteria for OED/PE 3.3. OED/PE in practice 4. Advanced developments in optimal experiment design 4.1. Robust optimal experiment design for parameter estimation 4.2. Multicriterion optimal experiment design 5. Conclusions References Chapter 11: Characterization of reactions and growth in automated continuous flow and bioreactor platforms-From linear Do ... 1. Introduction 2. Miniaturized platforms and applications 2.1. Continuous-flow microreactor platforms in synthetic chemistry 2.1.1. Operation 2.2. Bioreactor platforms with automatic liquid handling 2.3. Applications of DoE, self-optimization, and mbOED-A bibliographical review 2.3.1. DoE for continuous flow reactions in synthetic chemistry 2.3.2. Sequential self-optimization of continuous-flow reactions 2.3.3. DoE for the development of biotechnological processes DoE for parallel cultivation platforms 2.3.4. Model-based OED for continuous flow reactions 2.3.5. Model-based OED for bioreactor cultures 2.3.6. Model based OED dimension and complexity 2.4. Summary 3. Special aspects and challenges 3.1. Static vs dynamic experimental conditions 3.1.1. Continuous-flow reactors 3.1.2. Batch- and fed-batch bioreactors 3.1.3. Measurement frequency, measurement errors and optimal sampling 3.2. Sequential planning and updating in mbOED 3.2.1. Robustness issues 3.2.2. Termination criteria 3.3. Parameter identifiability 3.4. Bayesian statistics 3.5. Mathematical modeling, software and algorithms 4. Industry view 4.1. mbOED software, flexibility, usability, and required expert knowledge 5. Discussion and conclusions References Chapter 12: Product development in a multicriteria context 1. Introduction 2. Model fitting 2.1. Generating the data: Design of experiments 3. Multicriteria optimization and decision-making 4. Approximating the set of efficient product designs 5. Navigating the set of efficient product designs 6. The role of Qritos in the design process 7. Application: Designing an exterior paint recipe 7.1. Chemical recipe 7.2. DoE 7.3. Laboratory measurements 7.4. Modeling 7.5. Optimization goals (product specifications) 7.6. Decision-making process 8. Outlook References Chapter 13: Dispatching for batch chemical processes using Monte-Carlo simulations-A practical approach to scheduling in ... 1. Introduction 1.1. Problem setting 1.2. Literature 1.2.1. Machine scheduling 1.2.2. Scheduling chemical batch processes 2. Proposed solution 2.1. Production line simulation 2.1.1. Random phase durations 2.1.2. The simulation framework in a nutshell 2.2. Scheduling 3. Implementation 3.1. Important steps for the implementation of our decision support tool in practice 3.2. The final application 4. Beyond real-time operative scheduling 4.1. Use case 1: Prediction of future events and plant states 4.2. Use case 2: What-if analyses for plant expansion/optimization 5. Conclusions and outlook References Chapter 14: Applications of the RTN scheduling model in the chemical industry Abbreviations 1. Introduction 2. Review of RTN model Discrete-time representation 2.1.1. Resource balance 2.1.2. Resource limits 2.1.3. Operational constraints 2.1.4. Variable domains 2.1.5. Illustrative example 2.2. Continuous-time representation 2.2.1. Timing and sequencing 2.2.2. Resource balance 2.2.3. Variable domains 2.3. Discrete-time vs continuous-time 2.3.1. Representation of time 2.3.2. Model size 2.3.3. Linear programming relaxations 2.3.4. Objective functions 2.3.5. Discrete-continuous-time integration 3. Industry-led developments 3.1. Extended RTN model 3.1.1. Quality-based changeovers 3.1.2. External resource transfers with time windows 3.1.3. Point orders 3.1.4. Manipulation of resource limits 3.1.5. Resource slacks 3.1.6. Multiple task extents 3.1.7. Industrial example: Multiple extents in a continuous processing plant 3.2. State-space reformulation of extended RTN model 3.2.1. Industrial example: Online scheduling of a mixed batch/continuous processing plant 3.3. RTN for spatial packing problems 3.3.1. Industrial example: Payload loading optimization 3.4. RTN for transactional business process optimization 4. Industrial impact 5. Conclusions Acknowledgments References Index Back Cover