دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Daiheng Ni
سری:
ISBN (شابک) : 3030385485, 9783030385484
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 345
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Signalized Intersections: Fundamentals to Advanced Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تقاطع های علامت دار: مبانی سیستم های پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Chapter 1: Intersection Control 1.1 Relation Between Two Roads 1.2 Interchanges 1.2.1 Diamond Interchange Advantages Disadvantages Advantages Disadvantages 1.2.2 Cloverleaf Interchange Advantages Disadvantages 1.2.3 Trumpet Interchange Advantages Disadvantages 1.2.4 Directional Interchange Advantages Disadvantages 1.3 Intersections 1.4 Intersection Control 1.4.1 Level I: Basic Rules 1.4.2 Level II: Sign Control YIELD Sign Applications STOP Sign Applications Multi-way Stop Applications 1.4.3 Level III: Signalization 1.4.4 Level IV: Connected Vehicle Technology? End-of-Chapter Problems Reference Chapter 2: Warrants of Traffic Signals 2.1 Introduction 2.1.1 Overview of Traffic Signal Warrants 2.1.2 Preparing for Need Studies 2.2 Warrant 1: Eight-Hour Vehicular Volume 2.3 Warrant 2: Four-Hour Vehicular Volume 2.4 Warrant 3: Peak Hour 2.5 Warrant 4: Pedestrian Volume 2.6 Warrant 5: School Crossing 2.7 Warrant 6: Coordinated Signal System 2.8 Warrant 7: Crash Experience 2.9 Warrant 8: Roadway Network 2.10 Warrant 9: Intersection Near a Grade Crossing End-of-Chapter Problems Chapter 3: Signal Phasing 3.1 Phase Configurations 3.1.1 Two-Phase Operation 3.1.2 Three-Phase Operation Leading Left-Turn Leading Dual Left-Turn Lagging Left-Turn Split Phasing 3.1.3 Four-Phase Operation 3.1.4 More Phase Configurations 3.2 Yellow Trap 3.2.1 The Nature of the Problem 3.2.2 Solutions to the Problem Inefficient Quick Fix Dallas Phasing Arlington Phasing Flashing Yellow Arrow 3.3 Considerations in Signal Phasing 3.3.1 General Principles of Phasing 3.3.2 Numbering of Phases 3.3.3 Ring and Barrier Diagram 3.3.4 Pedestrian Phasing End-of-Chapter Problems Chapter 4: Left Turns 4.1 Types of Left-Turn Phases 4.1.1 Permissive Only Mode 4.1.2 Protected Only Mode 4.1.3 Protected-Permissive Mode 4.2 Left Turn Phasing 4.2.1 Permissive Left-Turn 4.2.2 Criteria to Justify Protected Left-Turn 4.2.3 Guideline of Left-Turn Phasing 4.3 Left-Turn Phasing Examples End-of-Chapter Problems References Chapter 5: Pre-timed Signal Timing 5.1 Types of Signalization 5.1.1 Signalization According to Proximity of Signals Nearby 5.1.2 Signalization According to Controller 5.1.3 Combinations of Intersection Signalization 5.2 Definition and Terminology 5.3 Effective Green Time 5.4 Relationship Between Indication Times and Effective Times 5.5 Cycle Length 5.5.1 Sum of Critical Lane Group Volumes 5.5.2 Minimum Cycle Length 5.5.3 More Realistic Cycle Lengths Practical Cycle Length Desirable Cycle Length Optimal Cycle Length 5.6 Phase Splits 5.7 Pedestrian Crossing Time Appendix 1 End-of-Chapter Problems References Chapter 6: Queuing at Intersections 6.1 Arrival/Departure Processes at an Intersection Approach 6.1.1 Uniform Arrival Process 6.1.2 Time-Varying Arrival Process 6.1.3 Poisson Arrival Process 6.1.4 General Arrival Process 6.1.5 Departure Processes 6.2 Basics of Queuing Theory 6.2.1 The First Section: Arrival Process 6.2.2 The Second Section: Departure Process/Service Time Distribution 6.2.3 The Third Section: Number of Servers 6.2.4 The Fourth Section: Queuing Discipline 6.2.5 Queuing System Example: D/D/1 6.2.6 Queuing System Example: M/D/1 6.2.7 Queuing System Example: M/M/1 6.3 Queuing at Signalized Intersections End-of-Chapter Problems References Chapter 7: Level of Service of Signalized Intersections 7.1 LOS Criteria for Signalized Intersections 7.2 Determining Control Delay 7.2.1 Estimation of Control Delay 7.2.2 Field Measurement of Control Delay 7.3 LOS for Signalized Intersections: HCM 7.3.1 Input Data Geometric Conditions Traffic Conditions Signalization Conditions 7.3.2 Lane Grouping 7.3.3 Determining Flow Rate 7.3.4 Determining Saturation Flow Rate 7.3.5 Determining Capacity and v/c Ratio 7.3.6 Determining Delay Uniform Delay, d1 Progression Adjustment Factor, PF Incremental Delay, d2 Initial Queue Delay, d3 7.3.7 Aggregated Delay Estimates 7.3.8 Determining LOS 7.3.9 Limitation of HCM Methodology 7.4 LOS for Signalized Intersections: Empirical 7.4.1 Before Field Measurement 7.4.2 Field Data Collection 7.4.3 Office Data Processing Appendix 1 End-of-Chapter Problems References Chapter 8: Controllers and Detectors 8.1 Feedback in Traffic Signal System 8.2 Architecture of Controller Cabinet 8.3 Controllers 8.3.1 Electromechanical Controllers 8.3.2 Microprocessor-Based Controllers 8.3.3 Controllers with Different Capabilities 8.3.4 NEMA Standards 8.3.5 Type 170 Standard 8.3.6 ATC Family of Standards 8.3.7 Controller Configurations Signal Timing Plans Detection Memory Vehicle Recalls 8.4 Sensors 8.4.1 Inductive Loop Detection System How the System Works Detector Settings Loop Design 8.4.2 Video-Based Detection System 8.5 Conflict Monitors 8.5.1 The Functions of Conflict Monitor 8.5.2 Removable Programing Card 8.6 Other Components 8.6.1 Load Switches 8.6.2 Flashers 8.6.3 The Cabinet End-of-Chapter Problems Reference Chapter 9: Actuated Control 9.1 Semi-Actuated Control 9.2 Fully-Actuated Control 9.3 Basic Timing Parameters in Actuated Control 9.3.1 Minimum GREEN 9.3.2 Passage Time 9.3.3 Maximum GREEN 9.3.4 YELLOW Interval 9.3.5 ALL RED Interval 9.3.6 Cycle Length 9.4 Functional Configuration of Actuated Control 9.4.1 Phase Recalls No Recall Minimum Recall Maximum Recall Soft Recall Pedestrian Recall 9.4.2 Memory Mode Locking Memory Mode Non-locking Memory Mode 9.4.3 Red and Yellow Lock 9.5 Timers of Actuated Control 9.5.1 Minimum GREEN Timer 9.5.2 Passage Timer 9.5.3 Maximum GREEN End-of-Chapter Problems References Chapter 10: Small-Area Detection 10.1 Loop Design and Setback Distance 10.1.1 Loop Design 10.1.2 Loop Setback Distance 10.2 Basic Actuated Controller 10.2.1 Loop Setback and Timing of Basic Actuated Controller 10.2.2 Calling Detector 10.2.3 Semi-actuated Control 10.2.4 Detection of Congested Traffic 10.2.5 Region of Operation 10.3 Variable-Initial Only Controller 10.4 Volume-Density Controller 10.4.1 Region of Operation 10.4.2 Time Waiting-Gap Reduction 10.4.3 Last Car Passage 10.5 Multi-point Detection 10.5.1 Queue Discharge System 10.5.2 Green Extension System End-of-Chapter Problems Reference Chapter 11: Large-Area Detection 11.1 Large-Area Detectors 11.2 Potential Advantages and Disadvantages 11.2.1 Potential Advantages 11.2.2 Potential Disadvantages 11.3 Applications of Large-Area Detectors 11.3.1 Application 1: Left-Turn Vehicles How Does It Work Timing Adjustment Permissive Left-Turn Delayed Call Detector 11.3.2 Application 2: Small Vehicles Powerheads Multiple Inter-connected Small Loops Quadrupoles 11.3.3 Application 3: Through and Right-Turn Vehicles Operation at Stop Line Right Turn on RED (RTOR) End-of-Chapter Problems Reference Chapter 12: High-Speed Approaches 12.1 Approach Speed and Intersection Control 12.1.1 An Overview of Applications of Actuated Control 12.1.2 Applications to Low-Speed Approaches Locking Detection Memory Semi-actuated Control Fully-Actuated Control Non-locking Detection Memory Left Turn, Through, and RTOR Small Vehicles 12.2 Dilemma Zone Problem 12.2.1 The Nature of the Problem 12.2.2 Dilemma Zone Delineation 12.3 Solutions to Dilemma Zone Problem 12.3.1 Solutions Based on Locking Detection Memory Semi-actuated Control Fully-Actuated Control Basic Actuated Controller Variable Initial-Only Controller Volume-Density Controller Protecting Vehicles Against Dilemma Zone Under a Single Speed Protecting Vehicles Against Dilemma Zone Under Varying Speeds 12.3.2 Solutions Based on Non-locking Detection Memory Large-Area Detector Alone Large-Area Detector in EC Mode + A Small-Area Detector Large-Area Detector in EC-DC Modes + Two Small-Area Detectors The Design How It Works End-of-Chapter Problems References Chapter 13: Preemption and Priority 13.1 Preemption vs. Priority 13.1.1 Preemption Control 13.1.2 Priority Control 13.1.3 Similarities and Differences 13.2 Emergency Vehicle Preemption 13.2.1 Cost and Benefit 13.2.2 Technology Light- and Infrared-Based System GPS/Radio-Based System Sound-Based System 13.2.3 Preemption Sequence 13.3 Railroad Preemption 13.3.1 Fox River Grove Bus-Train Collision: A Case Study 13.4 Preemption of Traffic Signals Near Railroad Crossings 13.4.1 When to Use 13.4.2 How It Works 13.4.3 Preemption Sequence 13.4.4 Design Elements Distance Between Traffic Signal and Railroad Crossing Warning Time 13.5 Transit Signal Priority 13.5.1 Passive Priority 13.5.2 Active Priority 13.5.3 Transit Signal Priority Strategies Do Nothing Early GREEN GREEN Extension Early RED Phase Insertion Phase Suppression Phase Rotation End-of-Chapter Problems References Chapter 14: Traffic Signal Coordination 14.1 Basics of Signal Coordination 14.1.1 When to Use 14.1.2 Time-Space Diagram 14.1.3 Signal Coordination 14.2 Types of Signal Coordination 14.2.1 According to Traffic Flow to Be Enhanced 14.2.2 According to Interconnection Among Intersections 14.2.3 According to Control Type at Coordinated Intersections 14.3 Coordination in Favor of Traffic in One Direction 14.3.1 Determine Common Cycle Length and Phase Splits 14.3.2 Construct Time-Space Diagram 14.3.3 Find Bandwidth 14.3.4 Determine Offsets 14.3.5 Fine Tune and Finish Up the Remaining Cycles 14.3.6 Compute Performance Measures 14.4 Coordination in Favor of Traffic in Two Directions 14.4.1 Non-uniform Block Spacing and Undetermined Cycle Length 14.4.2 Nonuniform Block Spacing and Cycle Length Predetermined 14.4.3 Uniform Block Spacing and Cycle Length Predetermined 14.4.4 Uniform Block Spacing and Undetermined Cycle Length 14.4.5 Left Turn Treatment 14.5 Coordination Involving Intersections with Actuated Control 14.5.1 Background Cycle 14.5.2 Force-Off Fixed Force-Off Floating Force-Off 14.5.3 Permissive Period and Yield Point 14.6 Coordination in Favor of Traffic in a Network 14.6.1 Condition of Coordinating a Closed Network 14.6.2 Coordinating a Closed Network with the Condition Met 14.6.3 Coordinating a Closed Network with the Condition Not Met 14.6.4 Quarter Cycle Offset System for One-Way Grid 14.6.5 Double Alternate System for Two-Way Grid 14.6.6 Coordination in a Network Involving Multi-legged Intersections 14.6.7 Terminology End-of-Chapter Problems References Index