ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Shreir's Corrosion VOL IV

دانلود کتاب خوردگی شریر VOL IV

Shreir's Corrosion VOL IV

مشخصات کتاب

Shreir's Corrosion VOL IV

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780444527875 
ناشر:  
سال نشر:  
تعداد صفحات: 870 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Shreir's Corrosion VOL IV به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب خوردگی شریر VOL IV نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

41plPK8M--L._SL500_AA300_......Page 1
Abbreviations......Page 2
4.01.2.1.1 Vapor degreasing......Page 3
4.01.2.3 Acidic Cleaners......Page 4
4.01.2.4 Alkaline Cleaners......Page 5
4.01.2.5.1 Formation of millscale......Page 6
4.01.2.5.2 Mechanism of scale removal......Page 7
Organic inhibitors......Page 8
Inorganic inhibitors......Page 9
4.01.3.2 Manual Cleaning......Page 10
4.01.3.5 Health, Safety, and the Environment......Page 11
Standards......Page 12
Abbreviations......Page 13
4.32.1 Materials Selection in the Design Process......Page 417
4.05.2 The Pack Cementation Process......Page 14
4.22.4 Calculation of AC-Induced Voltage......Page 15
4.05.3.1 Slurry Cementation......Page 57
4.34.1.5.1 Qualitative RBI......Page 603
4.38.1.4 In-Service Corrosion......Page 16
4.30.2.3 Risk Management Processes......Page 535
4.30.3 Corrosion Management tools......Page 250
4.13.4 Causes of Failure......Page 18
4.02.4.2 Testing......Page 19
4.03.3.9 Measurement of Film Thickness......Page 20
References......Page 473
Relevant Websites......Page 21
Symbols......Page 22
4.03.1 Practice of Anodizing......Page 23
4.03.2 Mechanism of Formation of Porous Oxide Coatings......Page 24
4.03.3 Properties of Coatings......Page 26
Standard State......Page 869
4.42.4 External Pipeline Corrosion Risks......Page 27
4.27.6.3 Problems due to Mineral Scales, Muds, and Sludges in Closed-Loop Water Systems......Page 28
4.43.2.3 Corrosion of Historical and Modern Metals......Page 61
4.27.7.2 Oxygen Pitting Corrosion......Page 491
4.38.2.2.3 High strength steels......Page 30
4.03.4.1 Atmospheric Exposure......Page 32
4.32.5 Characteristics of Successful Materials Selection for Corrosion Resistance......Page 108
4.03.5.1 Practice of Anodizing......Page 33
4.42.4.2.6 Coating condition monitoring: DC methods......Page 610
4.41.4.1 Documentation......Page 308
References......Page 35
4.04.1 Introduction......Page 38
4.38 Management of Corrosion of Aircraft......Page 356
4.28.2 Make up Water Treatment......Page 448
4.22.3 Interference Effects......Page 351
4.30.1.3 Legislative Drivers......Page 531
4.22.5 Evaluation of the AC Interference Effects......Page 164
4.09.3.3 Laser-Assisted Thermal Spray......Page 41
4.24.3.4 Erosion-Corrosion......Page 147
4.40.3.3 Selection of Materials and Protection Practices for Process Equipment......Page 729
4.42.4.1.1 Soil corrosion......Page 794
4.20.3 Lead-Based Materials......Page 43
4.41.3.1 Introduction......Page 44
4.42.4.2.3 Types of field joint coatings......Page 330
4.41.3.2.3 Laboratory testing......Page 45
4.24.5.3 Emergency Modes, Failures, and Maintenance of AP System......Page 386
4.04.5.1 Galvanic Coupling......Page 46
4.26.4.2 Scale Predictions......Page 433
4.04.6 Alternative Coating Systems......Page 47
4.36.1.4.7 Chemical analysis......Page 657
4.24.7 Environments Suitable for AP......Page 392
References......Page 783
4.05.1 Introduction......Page 51
4.42.2 Introduction: The Scale of the Corrosion Problem......Page 155
4.39.2 Causes of Degradation......Page 350
4.38.1.2 The Operational Environment......Page 196
4.05.2.2 Inward Growth Diffusion Coatings......Page 56
4.31.1.3.1 Life cycle costing......Page 520
4.23.4 Other Equipment......Page 225
4.05.3.4 Molten Salt Baths......Page 60
4.05.4 Modified Aluminide Coatings......Page 62
4.35.5.3.1 Surface condition......Page 626
4.15.4.3.4 Polyolefin coatings......Page 228
4.36.1.4.2 Coupons......Page 649
4.05.4.4 Reactive Element-Modified Aluminide Coatings......Page 68
4.05.5 Mitigating Substrate Alloy Interdiffusion Effects......Page 69
4.05.5.1 Smart Coating Concepts......Page 70
4.05.6 Summary and Conclusions......Page 71
References......Page 72
4.23.1 Introduction and Historical Background......Page 75
4.35.2 Overview of the Failure Assessment Diagram......Page 76
4.37.3 Advances in the Prevention of Corrosion in Automotive Bodywork......Page 77
4.39.4.1 Inspection Methods......Page 716
4.27.6 Waterside Problems Resulting from Mineral Scales, Muds, and Sludges......Page 81
4.23.2.1 Digital Instrumentation......Page 361
4.19.3 Sacrificial Anode Materials......Page 83
4.26.3.2 Inhibitor Performance......Page 426
4.38.2.2.2 Aluminum alloys......Page 696
4.06.5.1 Introduction......Page 84
4.24.4.4 Influence of the Level on the AP Effectiveness......Page 383
4.40.7 Corrosion Risk Management Costs and Benefits......Page 85
4.18.Summary......Page 278
4.20.4.3 Conductive Polymers......Page 86
4.42.4.2.8 Cathodic protection (CP)......Page 87
4.06.6.5.2 Alloying additions the zinc melt......Page 88
4.27.9 Evaluating and Modifying Waters for Use or Reuse in Industrial Processes and HVAC Water Systems......Page 389
4.06.7 Continuous Zinc and Zinc Alloy Coating......Page 89
4.06.8 Hot Tinning......Page 90
4.06.11 Applications for Hot Dip Coated Products......Page 91
4.06.13 Recent and Future Developments......Page 92
References......Page 93
Relevant Websites......Page 95
sdarticle (6)......Page 96
4.30.1 Background to Corrosion Management......Page 238
4.43.1.1 Cultural Heritage Context......Page 835
4.35.1 Introduction......Page 142
4.41.1.2 Overview of Oil and Gas Industry Corrosion......Page 97
4.08.3 Thermal Spraying: Variants......Page 98
4.18.2.3 Oxygen Reduction......Page 130
4.24.4 Anodically Protected Objects......Page 99
4.35.5.2.1 Service environment......Page 100
4.40.5.2 Internal Corrosion Risks......Page 103
4.11.3.1.1 Epoxies......Page 104
4.41.3.2 Data Availability......Page 492
4.07.6.6 Corrosion of the Cathode......Page 107
Potential measurement......Page 652
4.19.6 Anode Testing......Page 109
4.35.6 Worked Example FFS Assessment......Page 110
4.19.9 Cathodic Current Densities for Protecting Steel......Page 291
4.11.3.3 Additives: Surfactants, Rheological Control Agents, Flow Agents, Defoamers, Wetting Agents, Dispersants, etc.......Page 171
4.07.6.7.1 Substrate effects: epitaxy and pseudomorphism......Page 112
4.07.6.7.2 Electrolyte effects......Page 114
4.07.6.7.3 Form of current passed through cell......Page 115
4.07.6.8 Industrial Electroplating Techniques......Page 116
4.24.7.1.2 Stainless steels and alloys......Page 395
4.41.4.2.5 Pigging facilities......Page 770
4.07.7.1 Thickness......Page 117
4.07.7.2 Throwing Power......Page 118
4.07.7.3 Current Path Geometry......Page 119
4.07.7.5 Internal Stress......Page 120
4.07.7.6 Ductility, Hardness, Wear, Strength......Page 121
4.07.7.8 Porosity......Page 122
4.07.8 Plating from Ionic Liquids......Page 124
4.07.9 Recent Developments......Page 125
4.37.2 Corrosion of Automotive Bodywork......Page 129
4.36.1 Corrosion Monitoring......Page 644
4.39.4 Inspection Requirements......Page 715
4.43.1.2.1 Conservation rationale......Page 358
4.08.3.1 Flame Spraying......Page 131
4.10.2.8 Electrostatic Spray Application......Page 158
4.12.3.2.1 Basic pigments......Page 132
4.11.3 Components of Organic Coatings for Corrosion Control......Page 133
4.43.3.1 Desiccation......Page 841
4.16.5 Concluding Remarks......Page 135
4.35.5.3.4 Materials ageing......Page 628
4.08.3.8.2 Laser-hybrid techniques......Page 136
4.08.4 Corrosion Applications of Metallic Sprayed Coatings......Page 137
4.17.1.23 Erosion......Page 254
4.41.4.2.3 Inaccessible pipework......Page 769
References......Page 139
Abbreviations......Page 141
4.11.1 Introduction......Page 162
4.30.1.2 The Need for Corrosion Management......Page 419
4.43.1.2.2 Preservation goals......Page 281
4.36.1.3.6 Data management......Page 198
4.12.3.2.2 Soluble pigments......Page 152
References......Page 153
Glossary......Page 618
4.41.1.1 Outline......Page 749
4.18.2.2 Cathodic Protection......Page 265
4.14.3.2 Maintenance and Repair......Page 156
4.12.3 Mechanisms of Paint Protection......Page 157
4.40.5 Mitigation of Specific Corrosion Risks......Page 242
References......Page 159
4.11 Paint Formulation......Page 161
4.15.2 Properties Required of Coatings for Steel in Contact with Soil......Page 163
4.42.2.2 Causes of Pipeline Failures......Page 789
4.24.3.3 Stress Corrosion Cracking......Page 381
4.11.2 Overview of Corrosion Control by Paints and Organic Coatings......Page 165
4.41.1.3.2.1 Corrosion issues......Page 752
4.15.4.3 Line Pipe Coatings......Page 167
4.24.4.3 Throwing Power of AP......Page 168
4.36.1.3.8 Engineering considerations......Page 577
4.43.4.4 Electrolytic Techniques......Page 170
4.23.5.2 Fixed-Point Data Monitoring Devices......Page 369
4.11.4 Coatings Application Methods and Corrosion Protection......Page 172
4.11.6.1 Principle Objectives of Formulation - Coatings Design......Page 173
4.11.6.2 Volume Effects in Coatings......Page 175
4.11.6.3 Setting Formulation Goals......Page 177
4.11.6.3.1 Use of combinatorial methods in coating design and choice......Page 179
4.11.7 Coatings Design and Testing: Choosing the Final Formula......Page 181
4.38.3.2 Aircraft Washing and Cleaning......Page 708
References......Page 182
Further Readings......Page 183
4.12.1 Introduction......Page 184
Symbols......Page 201
4.32.1.1 Overview......Page 568
4.20.2.2 Cast Iron......Page 186
4.38.1.3.2 Corrosion occurring in the presence of an applied stress......Page 187
4.37.3.3.2 Priming......Page 638
4.21.2.3 Electrical Continuity......Page 327
4.19.4.4 Metallurgical Factors......Page 286
4.12.3.3.2 Ionogenic groups in the film substance......Page 189
4.12.3.3.3 Water and electrolytes outside the film......Page 190
4.34.1.9.2 Operator......Page 193
References......Page 194
4.36.1.3 Making a Case for Corrosion Monitoring......Page 197
4.37.3.3.6 Underbody protection......Page 639
4.26.3.3.3 Inhibitor persistency......Page 199
Further Reading......Page 200
Abbreviations......Page 517
Abbreviations......Page 416
4.28.3 Feedwater Treatment......Page 248
4.40.3.2.1 Coatings and linings......Page 728
4.14.4.1 Underwater Hull......Page 209
4.31.1.3.4 Incorporating risks and uncertainties into economic evaluations......Page 324
4.36.1.3.5 Personnel management......Page 646
4.14.4.4 Chemical and Product Tankers......Page 213
4.14.4.5 Cargo Holds......Page 214
4.30.3.2 Corrosion Risk Assessment Processes......Page 328
4.34.1.8.2 Selecting the interval......Page 608
4.14.5 Future Trends......Page 217
Relevant Websites......Page 599
Glossary......Page 220
4.39.1 Introduction......Page 714
4.18.1 Historical Background......Page 264
4.26.2.2 Field Applications......Page 223
4.15.4.3.2 Coal tar and asphalt/bitumen enamels......Page 227
4.30.3.1.2 Sources of corrosion risk......Page 539
4.15.4.4.2 Liquid-applied field joint coatings......Page 229
4.34.1.9.1 RBI practitioner......Page 305
4.15.4.4.4 FBE powder coatings......Page 230
4.15.4.4.5 FBE-polypropylene......Page 231
4.15.5 Pipeline Coatings for Thermal Insulation......Page 233
4.43.4.5 Hydrogen Reduction......Page 850
4.15.7 Quality Control During Coating Application......Page 235
References......Page 236
4.41.1.3 Areas of Corrosion Risk and Industry Mitigation Approach......Page 239
4.31.1.3.2 Selecting the most economic material of construction......Page 240
4.27.6.5 Problems due to Mineral Scales, Muds, and Sludges in Potable Water Lines......Page 490
4.16.4.4 Inspection of Steel Surfaces for Chemical Cleanliness......Page 243
4.26.3.3.4 Jet impingement......Page 244
References......Page 245
4.41 Management of Corrosion in the Oil and Gas Industry......Page 246
4.17.1 Coating Failures and Defects......Page 247
4.29.2.2 Scale Removal by Acids......Page 320
4.42.2.3 Pipeline Safety......Page 249
4.17.1.12 Chalking......Page 251
4.19.4.5 Environmental Factors......Page 287
4.38.2.2.4 Magnesium alloys......Page 252
4.26.4.1.1 Scale treatment chemicals......Page 253
Current protective treatments......Page 700
4.41.4.2 Engineering Considerations......Page 255
4.17.1.31 Grit Inclusions......Page 256
4.38.2.4 Design Considerations......Page 315
4.26.6.2 Monitoring and Data Management......Page 443
4.42.5.2 CO2 Corrosion - Localized Effects......Page 257
4.41.5.1 QA and Quality Control......Page 771
4.17.1.39 Overspray (also see Dry spray)......Page 258
4.38.3.4.2 Reprotection......Page 710
4.17.1.44 Runs or Sags (also Described as Curtains or Wrinkles)......Page 259
4.17.1.47 Rust Staining......Page 260
4.17.1.52 Tackiness......Page 261
4.17.1.55 Wrinkling/Rivelling (also see Crowsfooting)......Page 262
4.17.1.56 Zinc Carbonates......Page 263
4.24 Anodic Protection......Page 374
Abbreviations......Page 633
4.18.2.4 Hydrogen Evolution......Page 267
4.37.3.3 Corrosion Protection by the Paint System......Page 268
4.18.3.2 Sacrificial Anodes......Page 269
4.42.4.1.2 External microbiologically influenced corrosion (MIC)......Page 270
4.40.5.1 External Corrosion Risks......Page 731
4.42.4.1.5 AC corrosion......Page 272
4.18.4.4 Potential Measurements......Page 273
4.18.5 Current Requirements......Page 274
4.18.6 Coatings and Cathodic Protection......Page 275
4.18.8 Potential Attenuation in Impressed-Current Systems......Page 276
Further Reading......Page 279
4.19 Sacrificial Anodes......Page 280
4.36.1.1 Definition......Page 465
4.33.6 Mitigation of Risks Arising from Geography/Shape......Page 282
4.38.1.5 Impact of Corrosion on Structural Integrity......Page 283
4.38.2.1 Introduction......Page 573
4.41.3.2.1 Theoretical calculations......Page 288
4.19.5.2 Aluminum......Page 289
4.19.5.3 Magnesium......Page 290
4.42.4.2.10 CP: Impressed current systems......Page 292
4.30.5 Conclusions......Page 562
4.21.4.2 Impressed-Current Design......Page 293
4.19.10.6 Number of Anodes......Page 294
4.21.4.4 Resistance of Groundbeds......Page 335
4.19.10.9 Utilization Factor......Page 295
4.43.6.3 Carboxylates......Page 296
References......Page 297
Abbreviations......Page 298
4.24.2 Passivity of Metallic Materials......Page 377
4.37.2.1 Mechanisms and the Most Common Sites of Corrosion......Page 634
4.20.2.4.1 Iron-silicon alloys......Page 300
4.42.4.1 External Corrosion: Mechanisms......Page 793
4.32.2.2.1 Identifying credible corrosion risks......Page 301
4.20.2.6 Ferrite Anodes......Page 302
4.20.3.1 Lead Alloys......Page 303
4.30.3.2.3 Risk-based inspection......Page 544
4.42.4.2.11 Basic CP design......Page 309
4.38.2.3.3 Steels......Page 702
4.20.6 Ceramic Anodes......Page 314
sdarticle (20)......Page 318
Symbols......Page 319
4.42.3 Pipeline Integrity Management......Page 323
4.42.4.1.3 Preferential corrosion......Page 538
4.43.4.3 Removal of Corrosion Products......Page 495
4.24.6.1 Cathodes......Page 388
4.38.2.3.1 Introduction......Page 332
4.21.4 Cathodic Protection of Buried Structures......Page 333
4.26.5.3 Biocide Application......Page 438
4.24.7.4 Inorganic Salts......Page 337
4.21.4.5.4 Types of cable for anode installations......Page 338
4.21.5.2.3 Tubular anodes......Page 339
Cooling water systems......Page 667
4.21.6 Marine Structures......Page 340
4.21.7 Ships......Page 342
4.21.9 Internal Protection of Pipelines......Page 343
4.36.2.3 The Need to Inspect for Corrosion Damage......Page 344
4.21.12.1 Galvanic Anode Systems......Page 345
4.21.12.3 Power Sources for Cathodic Protection......Page 348
References......Page 349
Symbols......Page 788
4.34.1.5 Types of Risk Assessment......Page 354
Further Reading......Page 355
4.38.1.1 Introduction......Page 692
4.23.1.2 Voltmeters and Potentiometers......Page 357
4.35.4 The Kr Parameter......Page 623
4.23.2.2 Measurement Errors......Page 363
4.30.3.1.1 Corrosion damage and failure modes......Page 365
4.40.6 Mitigation of Corrosion Risks During Operation......Page 367
Potentiodynamic/cyclic polarization......Page 370
Linear polarization resistance (LPR)......Page 653
Further Reading......Page 373
Glossary......Page 375
4.33.4 Mitigation of Risks Arising from Thermal Design......Page 380
4.24.4.1 The Basic Requirements for Protected Equipments......Page 382
4.24.5 Modes of AP......Page 384
4.43.3.2 Deoxygenation......Page 385
4.27.10 Modifying Water by Selective Use of Standard Pretreatment Processes......Page 391
4.24.7.1.1 Carbon steel and cast iron......Page 393
4.24.7.1.3 Titanium......Page 397
4.34.1.14 Future Developments......Page 398
4.24.7.3 Organic Acids......Page 399
4.43.6.2 Tannins......Page 400
4.24.7.6 Hydroxides of Alkaline Metals......Page 401
4.24.8.1 Sulfuric Acid Coolers Made of Stainless Steel......Page 403
Pulp and paper industry......Page 404
References......Page 405
4.25.1 Introduction......Page 407
4.25.2 Corrosive Agent Removal (CAR)......Page 408
4.35.3 The Lr Parameter......Page 518
4.25.2.2 Liquid Environments......Page 409
4.34.1.4 The Role of RBI in Asset Integrity Management......Page 571
4.25.3.1 Corrosion Inhibition in Aqueous Acidic Solutions......Page 411
4.30.2.2 Quality Management Processes......Page 534
4.25.4 Final Remarks......Page 415
4.26.2.2.1 Continuous treatments......Page 421
4.43.1.2.4 Ethics......Page 424
4.43.2.2 Corrosion of Archaeological Metals......Page 837
4.43.2.1 The Influence of Corrosion on Conservation Strategies......Page 605
4.26.3.3.1 Bubble test......Page 427
4.43.3.1.2 Practical humidity control......Page 430
4.26.4.1 Scale Inhibitor Application......Page 432
4.43.5.3 Preparing Surfaces on Cultural Objects to Receive Coatings......Page 631
4.26.4.5 Scale Removal......Page 435
4.26.5.1 Bacteria Monitoring Techniques/Serial Dilution......Page 436
4.26.6 Management of Treating Programs......Page 439
4.26.6.1 Inhibition Risks and Mitigation by Monitoring......Page 441
4.43 Preservation of Metallic Cultural Heritage......Page 446
4.37.1 Introduction......Page 447
4.28.3.1 Dissolved Oxygen Control......Page 450
4.36.1.3.1 Objectives......Page 452
4.28.3.5 All Volatile Treatment (Oxidizing) (AVT(O))......Page 453
4.28.3.6 Oxygenated Treatment......Page 454
4.32.2.2.2 Performance prediction based on experience......Page 455
4.41.2 Management of Corrosion......Page 756
4.36.1.4.1 Historical development of corrosion monitoring......Page 648
4.28.4.4 All Polymer Treatment......Page 457
4.42.4.2.2 Types of pipeline coatings......Page 458
4.27.7.5 Stress Corrosion......Page 459
4.28.5 Condensate Treatment......Page 461
4.28.6 Boiler Treatment During Out-of-Service Conditions......Page 463
4.29.3 Mining Industry......Page 469
4.27.6.1 Problems from Mineral Scales, Muds, and Sludges in Boilers......Page 470
4.39.5 Highway Infrastructure......Page 471
4.27 Environmental Modification for Cooling, Heating and Potable Water Systems......Page 476
SI Units......Page 581
4.27.2 Heat Capacity and Latent Heat......Page 477
4.27.3 The Use of Water in Industrial Cooling and Heating Systems and Potable Applications......Page 478
4.27.4 The Need for Water Treatment to Control Waterside Heating, Cooling and Potable Water Environments......Page 479
4.27.6.2 Problems due to Mineral Scales, Muds, and Sludges in Cooling Systems......Page 489
4.27.7.4 Concentration Cell Corrosion or Crevice Corrosion......Page 493
4.27.7.7 Condensate Line Corrosion or Grooving Corrosion......Page 494
4.27.8 Problems of Microbiological Fouling......Page 496
4.43.5 Coatings......Page 497
4.27.11 Modifying Waterside Environments by Appropriate Metal and Alloy Materials Selection......Page 501
4.27.12 Understanding Contaminant Saturation Problems as a Precursor to Modification of Waterside Environments by Chemical Inhi......Page 502
4.27.14 Use of Contaminant Cycling Effects in Modifying Waterside Environments......Page 506
4.43.5.4.4 Silanes......Page 507
4.27.17 Modification of Cooling System Waterside Environments by Chemical Inhibitors......Page 510
4.27.18 Types of Modern Organic Chemical Inhibitors Employed to Modify Cooling System Waterside Environments Against Risks of Scale, Fouling, and Corrosion Control......Page 512
4.38.2.5 Final Assembly and Finishes......Page 707
4.27.20 Conclusion......Page 515
References......Page 516
4.31.1.3.3 Deciding among repair, protection, and replacement options......Page 521
4.31.2 Costs of Corrosion in Specific Sectors/Economies......Page 524
4.31.2.3 Corrosion Costs in National Economies......Page 526
References......Page 527
Abbreviations......Page 529
4.30.1.1 Introduction......Page 530
4.38.1.3.1 Corrosion occurring in the absence of an applied stress......Page 533
4.39.4.3 Structural Considerations......Page 719
4.30.3.2.2 Matrix analysis......Page 541
4.30.3.3 Probability Analysis - Dealing with Uncertainties......Page 546
4.43.4.2 Washing Methods in Practice......Page 845
4.30.4 Corrosion Management Systems......Page 553
4.30.4.2 Setting Performance Measures......Page 558
4.30.4.3 Data Management Systems......Page 560
References......Page 689
4.32.1.3 Materials Selection in Mechanical Design......Page 569
4.43.1.2.3 Standards in conservation......Page 836
4.32.3 Economic Evaluation in Materials Selection......Page 578
References......Page 580
4.40.3 Materials and Protection Practices for Process Equipment......Page 585
4.33.7 Mitigation of Galvanic Compatibility Risks......Page 594
4.34.1 Introduction......Page 600
4.34.1.3 The Structure of a Risk Management Program......Page 602
4.34.1.7.1 API 580 and 581......Page 607
4.35.6.1.2 Calculation of Kr......Page 630
4.34.1.9.7 Realistic consequence modeling......Page 612
4.34.1.10 Case Study 1: Corrosion Rate Trending......Page 613
4.34.1.12 Case Study 3: Use of Robust RBI to Understand Plant Wide Integrity from Restricted Inspection Data......Page 614
4.34.1.12.1 Efficient capture of process or hardware modifications......Page 615
4.34.1.13 Major Challenges for RBI......Page 616
References......Page 617
Symbols......Page 619
4.35.5 The Assessment of Corrosion Defects......Page 625
4.35.5.3.3 Initial microstructure......Page 627
4.42.4.2.4 Coating failure......Page 800
4.35.5.5 Step 5: Undertake Structural Integrity Assessment......Page 629
4.37.3.2 Advances in Materials......Page 636
4.37.3.3.1 Pretreatment......Page 637
References......Page 640
sdarticle (35)......Page 641
Glossary......Page 642
Abbreviations......Page 643
4.36.1.3.3 Choice of technique......Page 645
4.36.1.3.7 Legislation and standards......Page 647
4.36.1.4.3 Electrical resistance (ER)......Page 651
Electrochemical impedance spectroscopy (EIS)......Page 654
4.42.4.2.9 CP: Sacrificial anode systems......Page 655
4.36.1.4.9 Test heat exchangers and spool pieces......Page 658
4.38.2.3.6 Composite materials......Page 659
Case studies......Page 662
4.43.7 Painted Metals......Page 663
4.42.5.2.4 Preferential weld corrosion......Page 809
4.36.1.5.3 Power generation industry......Page 664
4.43.7.2 Refinishing Painted Surfaces......Page 773
Flue gas outlet duct corrosion control......Page 666
4.36.1.5.6 Transportation......Page 668
4.36.1.6 Future Developments......Page 669
4.36.2.2 Historical Development of Inspection Technology......Page 670
4.36.2.4 Inspecting for Corrosion Damage......Page 672
4.36.2.5.1 Visual inspection......Page 673
Types of probe......Page 674
Specialized ultrasonic systems......Page 676
Portable systems......Page 678
4.36.2.5.6 Dye penetrant (DPI) and magnetic particle (MPI) surface crack detection......Page 679
4.36.2.5.9 Fiber optics......Page 680
4.36.2.6.1 Background......Page 681
4.36.2.6.2 Development of ILI vehicles......Page 682
4.36.2.7 Management of Inspection Programs......Page 683
4.36.2.8.1 Oil and gas industry equipment......Page 684
4.36.2.8.3 Power plants......Page 685
4.36.2.9 Future Developments......Page 686
British Standards/ISO......Page 687
American Society for Testing Materials (ASTM)......Page 688
sdarticle (37)......Page 691
4.38.1.3.3 Corrosion arising from poor design and protection......Page 695
Solid metal embrittlement......Page 699
4.38.2.3.4 Magnesium alloys......Page 704
4.38.2.3.5 Titanium alloys......Page 705
4.38.2.3.7 Wear and fretting resistant coatings......Page 706
4.41.6.2 Routine Inspection and Monitoring......Page 709
4.38.3.7 Dehumidification......Page 711
References......Page 712
4.39.6 Other Infrastructure......Page 720
References......Page 722
Symbols......Page 723
4.40.1 Industry Scope......Page 724
4.40.4 Mitigation of Corrosion Risks by Good Detailed Design, Procurement, and Construction Practices......Page 730
4.40.8 Future Trends in Process Equipment......Page 742
4.41.3.2.2 Corrosion risk analysis (CRA)......Page 743
sdarticle (40)......Page 746
Glossary......Page 747
4.41.1.3.1.1 Corrosion issues......Page 751
4.41.1.3.3.1 Corrosion issues......Page 753
4.41.1.4 Industry Drivers and Changes......Page 754
4.41.3 Front End Engineering Design (FEED)......Page 759
4.41.3.3 Procurement, Installation, and Operational Practicalities......Page 764
4.41.4.1.1 Material selection report......Page 766
4.41.4.1.3 Chemical injection systems......Page 767
4.41.5.3 Handover to Operations......Page 772
4.41.6.4.1 Temperature, pressure, CO2/H2S content......Page 776
4.41.6.5 Data Management......Page 777
4.41.6.6 Change in Process Conditions......Page 778
4.41.6.8 Direct Assessment Procedures......Page 779
4.41.6.10.1 Corrosion management team......Page 780
4.41.6.10.4 Key point indicators (KPI)......Page 781
4.41.6.10.6 Ongoing improvements......Page 782
4.42 Management of Corrosion of Onshore Pipelines......Page 786
Abbreviations......Page 787
4.42.4.1.4 Stray-current corrosion......Page 796
4.43.3.1.1 Relative humidity - Threshold corrosion values......Page 797
4.42.4.2.5 Coating condition monitoring......Page 801
4.42.4.2.7 Coating condition monitoring: AC methods......Page 802
4.42.4.2.14 CP monitoring......Page 805
4.42.5 Internal Pipeline Corrosion Risks......Page 806
4.42.5.1 Sweet or CO2 Corrosion......Page 807
4.42.5.1.4 Effect of partial pressure of CO2......Page 808
4.42.5.3.2 Hydrogen-induced cracking (HIC)......Page 810
4.42.5.6.1 Corrosion allowance......Page 811
4.42.5.6.5 Inhibitors......Page 812
4.42.5.7 Internal Corrosion Monitoring......Page 813
4.42.5.8 Assessing the Internal Corrosion Risk......Page 814
4.42.6.1.1 High-pH SCC......Page 815
4.42.6.1.2 Near-neutral pH SCC......Page 816
4.42.7.1 In-Line Inspection......Page 817
4.42.7.1.3 ILI for crack detection......Page 818
4.42.7.3 Direct Assessment......Page 819
4.42.7.3.3 Stress corrosion cracking direct assessment (SCCDA)......Page 820
4.42.8 Pipeline Corrosion Management: Overview......Page 821
Tables......Page 823
sdarticle (42)......Page 834
4.43.4.1 Removing Ions that Act as Corrosion Accelerators......Page 844
4.43.5.1 Coating Rationale and Research......Page 851
4.43.5.2 Metal Surfaces and Patinas......Page 853
4.43.5.4.1 Acrylic coatings......Page 855
4.43.5.4.2 Waxes......Page 857
4.43.5.4.3 Cellulose nitrate......Page 858
4.43.6.1 Benzotriazole (BTA)......Page 859
4.43.7.1 Removing Paint......Page 862
4.43.8 Overview......Page 864
sdarticle (44)......Page 868
Outline placeholder......Page 0
Common Suffixes......Page 870




نظرات کاربران