ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Ship Resistance and Propulsion

دانلود کتاب مقاومت کشتی و نیروی محرکه

Ship Resistance and Propulsion

مشخصات کتاب

Ship Resistance and Propulsion

ویرایش: 2 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781107142060, 1107142067 
ناشر: Cambridge University Press 
سال نشر: 2017 
تعداد صفحات: 627 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Ship Resistance and Propulsion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقاومت کشتی و نیروی محرکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقاومت کشتی و نیروی محرکه

این نسخه به روز شده یک رویکرد علمی مدرن برای ارزیابی مقاومت کشتی و نیروی محرکه برای طیف وسیعی از انواع کشتی ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

This updated edition provides a modern scientific approach to evaluating ship resistance and propulsion for a range of ship types.



فهرست مطالب

Contents
Preface to the Second Edition
Preface to the First Edition
Nomenclature
Abbreviations
Figure Acknowledgements
1 Introduction
	History
	Powering: Overall Concept
	Improvements in Efficiency
	references (chapter 1)
2 Propulsive Power
	2.1 Components of Propulsive Power
	2.2 Propulsion Systems
	2.3 Definitions
	2.4 Components of the Ship Power Estimate
3 Components of Hull Resistance
	3.1 Physical Components of Main Hull Resistance
		3.1.1 Physical Components
		3.1.2 Momentum Analysis of Flow Around Hull
		3.1.3 Systems of Coefficients Used in Ship Powering
		3.1.4 Measurement of Model Total Resistance
		3.1.5 Transverse Wave Interference
		3.1.6 Dimensional Analysis and Scaling
	3.2 Other Drag Components
		3.2.1 Appendage Drag
		3.2.2 Air Resistance of Hull and Superstructure
		3.2.3 Roughness and Fouling
		3.2.4 Wind and Waves
		3.2.5 Service Power Margins
	references (chapter 3)
4 Model–Ship Extrapolation
	4.1 Practical Scaling Methods
		4.1.1 Traditional Approach: Froude
		4.1.2 Form Factor Approach: Hughes
	4.2 Geosim Series
	4.3 Flat Plate Friction Formulae
		4.3.1 Froude Experiments
		4.3.2 Schoenherr Formula
		4.3.3 The ITTC Formula
		4.3.4 Other Proposals for Friction Lines
	4.4 Derivation of Form Factor (1 + k)
		4.4.1 Model Experiments
		4.4.2 CFD Methods
		4.4.3 Empirical Methods
		4.4.4 Effects of Shallow Water
	references (chapter 4)
5 Model–Ship Correlation
	5.1 Purpose
	5.2 Procedures
		5.2.1 Original Procedure
		5.2.2 ITTC1978 Performance Prediction Method
		5.2.3 Summary
	5.3 Ship Speed Trials and Analysis
		5.3.1 Purpose
		5.3.2 Trials Conditions
		5.3.3 Ship Condition
		5.3.4 Trials Procedures and Measurements
		5.3.5 Corrections
		5.3.6 Analysis of Correlation Factors and Wake Fraction
		5.3.7 Summary
		5.3.8 Updated Ship Speed Trials Procedures
	references (chapter 5)
6 Restricted Water Depth and Breadth
	6.1 Shallow Water Effects
		6.1.1 Deep Water
		6.1.2 Shallow Water
	6.2 Bank Effects
	6.3 Blockage Speed Corrections
	6.4 Squat
	6.5 Wave Wash
	references (chapter 6)
7 Measurement of Resistance Components
	7.1 Background
	7.2 Need for Physical Measurements
	7.3 Physical Measurements of Resistance Components
		7.3.1 Skin Friction Resistance
		7.3.2 Pressure Resistance
		7.3.3 Viscous Resistance
		7.3.4 Wave Resistance
	7.4 Flow Field Measurement Techniques
		7.4.1 Hot-Wire Anemometry
		7.4.2 Five-Hole Pitôt Probe
		7.4.3 Photogrammetry
		7.4.4 Laser-Based Techniques
		7.4.5 Summary
	references (chapter 7)
8 Wake and Thrust Deduction
	8.1 Introduction
		8.1.1 Wake Fraction
		8.1.2 Thrust Deduction
		8.1.3 Relative Rotative Efficiency ηR
	8.2 Origins of Wake
		8.2.1 Potential Wake: wP
		8.2.2 Frictional Wake: wF
		8.2.3 Wave Wake: wW
		8.2.4 Summary
	8.3 Nominal and Effective Wake
	8.4 Wake Distribution
		8.4.1 General Distribution
		8.4.2 Circumferential Distribution of Wake
		8.4.3 Radial Distribution of Wake
		8.4.4 Analysis of Detailed Wake Measurements
	8.5 Detailed Physical Measurements of Wake
		8.5.1 Circumferential Average Wake
		8.5.2 Detailed Measurements
	8.6 Computational Fluid Dynamics Predictions of Wake
	8.7 Model Self-Propulsion Experiments
		8.7.1 Introduction
		8.7.2 Resistance Tests
		8.7.3 Propeller Open Water Tests
		8.7.4 Model Self-Propulsion Tests
		8.7.5 Trials Analysis
		8.7.6 Wake Scale Effects
		8.8 Empirical Data for Wake Fraction and Thrust Deduction Factor
		8.8.1 Introduction
		8.8.2 Single Screw
		8.8.3 Twin Screw
		8.8.4 Effects of Speed and Ballast Condition
	8.9 Effects of Shallow Water
	8.10 Tangential Wake
		8.10.1 Origins of Tangential Wake
		8.10.2 Effects of Tangential Wake
	8.11 Submarine and AUV Wake and Thrust Deduction
		8.11.1 Submarine and AUV Wake
		8.11.2 Submarine and AUV Thrust Deduction
		8.11.3 Submarine and AUV Relative Rotative Efficiency
	references (chapter 8)
9 Numerical Estimation of Ship Resistance
	9.1 Introduction
	9.2 Historical Development
	9.3 Available Techniques
		9.3.1 Navier–Stokes Equations
		9.3.2 Incompressible Reynolds Averaged Navier–Stokes Equations (RANS)
		9.3.3 Potential Flow
		9.3.4 Free Surface
	9.4 Interpretation of Numerical Methods
		9.4.1 Introduction
		9.4.2 Validation of Applied CFD Methodology
		9.4.3 Access to CFD
	9.5 Thin Ship Theory
		9.5.1 Background
		9.5.2 Distribution of Sources
		9.5.3 Modifications to the Basic Theory
		9.5.4 Example Results
	9.6 Estimation of Ship Self-Propulsion Using RANS
		9.6.1 Background
		9.6.2 Mesh Generation
		9.6.3 Boundary Conditions
		9.6.4 Methodology
		9.6.5 Results
		9.6.6 Added Resistance in Waves
	9.7 Summary
	references (chapter 9)
10 Resistance Design Data
	10.1 Introduction
	10.2 Data Sources
		10.2.1 Standard Series Data
		10.2.2 Other Resistance Data
		10.2.3 Regression Analysis of Resistance Data
		10.2.4 Numerical Methods
	10.3 Selected Design Data
		10.3.1 Displacement Ships
		10.3.2 Semi-Displacement Craft
		10.3.3 Planing Craft
		10.3.4 Small Craft
		10.3.5 Multihulls
		10.3.6 Yachts
		10.3.7 Submarines and AUVs
		10.3.8 Hydrofoil Craft
	10.4 Wetted Surface Area
		10.4.1 Background
		10.4.2 Displacement Ships
		10.4.3 Semi-Displacement Ships, Round-Bilge Forms
		10.4.4 Semi-Displacement Ships, Double-Chine Forms
		10.4.5 Planing Hulls, Single Chine
		10.4.6 Yacht Forms
	references (chapter 10)
11 Propulsor Types
	11.1 Basic Requirements: Thrust and Momentum Changes
	11.2 Levels of Efficiency
	11.3 Summary of Propulsor Types
		11.3.1 Marine Propeller
		11.3.2 Controllable Pitch Propeller (CP Propeller)
		11.3.3 Ducted Propellers
		11.3.4 Contra-Rotating Propellers
		11.3.5 Tandem Propellers
		11.3.6 Z-Drive Units
		11.3.7 Podded Azimuthing Propellers
		11.3.8 Waterjet Propulsion
		11.3.9 Cycloidal Propeller
		11.3.10 Paddle Wheels
		11.3.11 Sails
		11.3.12 Oars
		11.3.13 Lateral Thrust Units
		11.3.14 Other Propulsors
	references (chapter 11)
12 Propeller Characteristics
	12.1 Propeller Geometry, Coefficients, Characteristics
		12.1.1 Propeller Geometry
		12.1.2 Dimensional Analysis and Propeller Coefficients
		12.1.3 Presentation of Propeller Data
		12.1.4 Measurement of Propeller Characteristics
	12.2 Cavitation
		12.2.1 Background
		12.2.2 Cavitation Criterion
		12.2.3 Subcavitating Pressure Distributions
		12.2.4 Propeller Section Types
		12.2.5 Cavitation Limits
		12.2.6 Effects of Cavitation on Thrust and Torque
		12.2.7 Cavitation Tunnels
		12.2.8 Avoidance of Cavitation
		12.2.9 Preliminary Blade Area – Cavitation Check
		12.2.10 Example: Estimate of Blade Area
	12.3 Propeller Blade Strength Estimates
		12.3.1 Background
		12.3.2 Preliminary Estimates of Blade Root Thickness
		12.3.3 Methods of Estimating Propeller Stresses
		12.3.4 Propeller Strength Calculations Using Simple Beam Theory
	12.4 Shape-Adaptive Foils
	references (chapter 12)
13 Powering Process
	13.1 Selection of Marine Propulsion Machinery
		13.1.1 Selection of Machinery: Main Factors to Consider
		13.1.2 Propulsion Plants Available
		13.1.3 Propulsion Layouts
	13.2 Propeller–Engine Matching
		13.2.1 Introduction
		13.2.2 Controllable Pitch Propeller (CP Propeller)
		13.2.3 The Multi-Engined Plant
	13.3 Propeller Off-Design Performance
		13.3.1 Background
		13.3.2 Off-Design Cases: Examples
	13.4 Voyage Analysis and In-Service Monitoring
		13.4.1 Background
		13.4.2 Data Required and Methods of Obtaining Data
		13.4.3 Methods of Analysis
		13.4.4 Limitations in Methods of Logging and Data Available
		13.4.5 Developments in Voyage Analysis
		13.4.6 Further Data Monitoring and Logging
	13.5 Dynamic Positioning
	references (chapter 13)
14 Hull Form Design
	14.1 General
		14.1.1 Introduction
		14.1.2 Background
		14.1.3 Choice of Main Hull Parameters
		14.1.4 Choice of Hull Shape
	14.2 Fore End
		14.2.1 Basic Requirements of Fore End Design
		14.2.2 Bulbous Bows
		14.2.3 Cavitation
	14.3 Aft End
		14.3.1 Basic Requirements of Aft End Design
		14.3.2 Stern Hull Geometry to Suit Podded Units
		14.3.3 Shallow Draught Vessels
	14.4 Influence of Hull Form on Seakeeping
	14.5 Computational Fluid Dynamics Methods Applied to Hull Form Design
	references (chapter 14)
15 Numerical Methods for Propeller Analysis
	15.1 Introduction
	15.2 Historical Development of Numerical Methods
	15.3 Hierarchy of Methods
	15.4 Guidance Notes on the Application of Techniques
		15.4.1 Blade Element-Momentum Theory
		15.4.2 Lifting Line Theories
		15.4.3 Surface Panel Methods
		15.4.4 Reynolds Averaged Navier–Stokes
	15.5 Blade Element-Momentum Theory
		15.5.1 Momentum Theory
		15.5.2 Goldstein K Factors [15.8]
		15.5.3 Blade Element Equations
		15.5.4 Inflow Factors Derived from Section Efficiency
		15.5.5 Typical Distributions of a, a′ and dKT/dx
		15.5.6 Section Design Parameters
		15.5.7 Lifting Surface Flow Curvature Effects
		15.5.8 Calculations of Curvature Corrections
		15.5.9 Algorithm for Blade Element-Momentum Theory
	15.6 Propeller Wake Adaption
		15.6.1 Background
		15.6.2 Optimum Spanwise Loading
		15.6.3 Optimum Diameters with Wake-Adapted Propellers
	15.7 Effect of Tangential Wake
	15.8 Examples Using Blade Element-Momentum Theory
		15.8.1 Approximate Formulae
		15.8.2 Example 1
		15.8.3 Example 2
		15.8.4 Example 3
	15.9 Numerical Prediction of Cavitation
	15.10 Assessment of Propeller Noise
	15.11 Summary
	references (chapter 15)
16 Propulsor Design Data
	16.1 Introduction
		16.1.1 General
		16.1.2 Number of Propeller Blades
	16.2 Propulsor Data
		16.2.1 Propellers
		16.2.2 Controllable Pitch Propellers
		16.2.3 Ducted Propellers
		16.2.4 Podded Propellers
		16.2.5 Cavitating Propellers
		16.2.6 Supercavitating Propellers
		16.2.7 Surface-Piercing Propellers
		16.2.8 High-Speed Propellers, Inclined Shaft
		16.2.9 Small Craft Propellers: Locked, Folding and Self-Pitching
		16.2.10 Waterjets
		16.2.11 Vertical Axis Propellers
		16.2.12 Paddle Wheels
		16.2.13 Lateral Thrust Units
		16.2.14 Oars
		16.2.15 Sails
	16.3 Hull and Relative Rotative Efficiency Data
		16.3.1 Wake Fraction wT and Thrust Deduction t
		16.3.2 Relative Rotative Efficiency, ηR
	16.4 Submarine and AUV Propulsor Design
		16.4.1 Submarine Propeller
		16.4.2 AUV Propeller
	references (chapter 16)
17 Reductions in Propulsive Power and Emissions
	17.1 Introduction
	17.2 Potential Savings in Hull Resistance
	17.3 Potential Savings in Propeller Efficiency
		17.3.1 Main Energy Losses
		17.3.2 Detailed Design Modification to Propeller
		17.3.3 Hull–Propeller–Rudder Interaction
	17.4 Power Savings During Operation
		17.4.1 Speed
		17.4.2 Effects of Trim on Hull Resistance
		17.4.3 Hull Surface Finish
		17.4.4 Hull/Propeller Cleaning
		17.4.5 Minimum Water Ballast
		17.4.6 Weather Routeing
	17.5 Energy Saving Devices (ESDs)
		17.5.1 Working Principles
		17.5.2 Upstream Fins
		17.5.3 Upstream Ducts (Pre-Ducts)
		17.5.4 Twisted Stern Upstream of Propeller
		17.5.5 Downstream Fins
		17.5.6 Twisted Rudder
		17.5.7 Integrated Propeller–Rudder
		17.5.8 Propeller Boss Cap Fins (PBCFs)
		17.5.9 Summary
	17.6 Auxiliary Propulsion Devices
		17.6.1 Wind
		17.6.2 Wave
		17.6.3 Solar: Using Photovoltaic Cells
		17.6.4 Gyroscopic Systems
		17.6.5 Auxiliary Power–Propeller Interaction
		17.6.6 Applications of Auxiliary Power
	17.7 Alternative Fuels
	17.8 Alternative Machinery/Propulsor Arrangements
	17.9 Energy Efficiency Design Index (EEDI)
		17.9.1 Introduction
		17.9.2 EEDI Formula
		17.9.3 Power P
		17.9.4 Capacity C
		17.9.5 Speed Vref
		17.9.6 Correction Factors in Equation (17.10)
		17.9.7 EEDI Reference Line
		17.9.8 Ship Types Subject to EEDI Regulations
		17.9.9 Implementation of EEDI
		17.9.10 Reduction in EEDI (Methods of Reducing EEDI)
		17.9.11 Minimum Propulsive Power
	17.10 Summary
	references (chapter 17)
18 Applications
	18.1 Background
	18.2 Example Applications
		18.2.1 Example Application 1. Tank Test Data: Estimate of Ship Effective Power
		18.2.2 Example Application 2. Model Self-Propulsion Test Analysis
		18.2.3 Example Application 3. Wake Analysis from Full-Scale Trials Data
		18.2.4 Example Application 4. 140 m Cargo Ship: Estimate of Effective Power
		18.2.5 Example Application 5. Tanker: Estimates of Effective Power in Load and Ballast Conditions
		18.2.6 Example Application 6. 8000 TEU Container Ship: Estimates of Effective and Delivered Power
		18.2.7 Example Application 7. 135 m Twin-Screw Ferry, 18 knots: Estimate of Effective Power PE
		18.2.8 Example Application 8. 45.5 m Passenger Ferry, 37 knots, Twin-Screw Monohull: Estimates of Effective and Delivered Power
		18.2.9 Example Application 9. 98 m Passenger/Car Ferry, 38 knots, Monohull: Estimates of Effective and Delivered Power
		18.2.10 Example Application 10. 82 m Passenger/Car Catamaran Ferry, 36 knots: Estimates of Effective and Delivered Power
		18.2.11 Example Application 11. 130 m Twin-Screw Warship, 28 knots, Monohull: Estimates of Effective and Delivered Power
		18.2.12 Example Application 12. 35 m Patrol Boat, Monohull: Estimate of Effective Power
		18.2.13 Example Application 13. 37 m Ocean-Going Tug: Estimate of Effective Power
		18.2.14 Example Application 14. 14 m Harbour Work Boat, Monohull: Estimate of Effective Power
		18.2.15 Example Application 15. 18 m Planing Craft, Single-Chine Hull: Estimates of Effective Power Preplaning and Planing
		18.2.16 Example Application 16. 25 m Planing Craft, 35 knots, Single-Chine Hull: Estimate of Effective Power
		18.2.17 Example Application 17. 10 m Yacht: Estimate of Performance
		18.2.18 Example Application 18. Tanker: Propeller Off-Design Calculations
		18.2.19 Example Application 19. Twin-Screw Ocean-Going Tug: Propeller Off-Design Calculations
		18.2.20 Example Application 20. Ship Speed Trials: Correction for Natural Wind
		18.2.21 Example Application 21. Detailed Cavitation Check on Propeller Blade Section
		18.2.22 Example Application 22. Estimate of Propeller Blade Root Stresses
		18.2.23 Example Application 23. Propeller Performance Estimates Using Blade Element-Momentum Theory
		18.2.24 Example Application 24. Wake-Adapted Propeller
		18.2.25 Example Application 25. Patrol Class Submarine: Estimates of Effective and Delivered Power
		18.2.26 Example Application 26. AUV: Estimates of Effective and Delivered Power
	references (chapter 18)
APPENDIX A1: Background Physics
	A1.1 Background
	A1.2 Basic Fluid Properties and Flow
		Fluid Properties
		Steady Flow
		Uniform Flow
		Streamline
	A1.3 Continuity of Flow
	A1.4 Forces Due to Fluids in Motion
	A1.5 Pressure and Velocity Changes in a Moving Fluid
	A1.6 Boundary Layer
		Origins
		Outer Flow
		Flow Within the Boundary Layer
		Displacement Thickness
		Laminar Flow
	A1.7 Flow Separation
	A1.8 Wave Properties
		Wave Speed
		Deep Water
		Shallow Water
	references (appendix a1)
APPENDIX A2: Derivation of Eggers Formula for Wave Resistance
APPENDIX A3: Tabulations of Resistance Design Data
APPENDIX A4: Tabulations of Propulsor Design Data
Index




نظرات کاربران