دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Abhijit Dasgupta (auth.)
سری:
ISBN (شابک) : 9781461488538, 9781461488545
ناشر: Birkhäuser Basel
سال نشر: 2014
تعداد صفحات: 434
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب تئوری مجموعه: با مقدمه ای بر مجموعه های واقعی: منطق و مبانی ریاضی، تحلیل، جبر، توپولوژی، ریاضیات گسسته، منطق
در صورت تبدیل فایل کتاب Set Theory: With an Introduction to Real Point Sets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تئوری مجموعه: با مقدمه ای بر مجموعه های واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عدد چیست؟ بی نهایت چیست؟ تداوم چیست؟ نظم چیست؟ پاسخ به این سؤالات اساسی که توسط ریاضیدانان اواخر قرن نوزدهم مانند ددکیند و کانتور به دست آمد، نظریه مجموعه ها را به وجود آورد. این کتاب درسی نظریه مجموعههای کلاسیک را به شیوهای شهودی اما مشخص ارائه میکند.
برای ایجاد انعطافپذیری در انتخاب موضوع در دروس، کتاب در چهار بخش نسبتاً مستقل با طعمهای ریاضی متمایز سازماندهی شده است. قسمت اول با بدیهیات Dedekind–Peano شروع می شود و با ساخت اعداد حقیقی به پایان می رسد. نظریه اصلی کانتور-ددکیند در مورد کاردینالها، دستورات و دستورات در بخش دوم ظاهر میشود. بخش سوم بر پیوستار واقعی تمرکز دارد. در نهایت، مسائل اساسی و بدیهیات رسمی در بخش چهارم معرفی میشوند. هر بخش با یک فصل پسنوشته به بحث درباره موضوعاتی فراتر از محدوده متن اصلی، از اظهارات فلسفی گرفته تا نگاهی اجمالی به نتایج برجسته نظریه مجموعههای مدرن، مانند حل مسائل لوسین در مجموعههای تصویری با استفاده از تعیین بازیهای بینهایت و کاردینالهای بزرگ، پایان مییابد. /p>
تفکیک مسائل فرا ریاضی به قسمت چهارم اختیاری در پایان، این کتاب درسی را برای دانشآموزان علاقهمند به هر رشتهای از ریاضیات مناسب میکند، نه فقط برای کسانی که قصد دارند در منطق یا مبانی تخصص داشته باشند. مطالب کافی در متن برای یک دوره یک ساله در سطح فوق لیسانس وجود دارد. برای دوره های کوتاه تر یک ترم یا یک چهارم، انواع مختلفی از موضوعات امکان پذیر است. این کتاب منبع مفیدی برای کارشناسانی خواهد بود که در یک منطقه مرتبط یا مجاور کار میکنند و برای مبتدیانی که میخواهند نظریه مجموعهها را از طریق خودآموزی یاد بگیرند.
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner.
To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals.
Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Front Matter....Pages i-xv
Preliminaries: Sets, Relations, and Functions....Pages 1-23
Front Matter....Pages 25-27
The Dedekind–Peano Axioms....Pages 29-46
Dedekind’s Theory of the Continuum....Pages 47-65
Postscript I: What Exactly Are the Natural Numbers?....Pages 67-72
Front Matter....Pages 73-75
Cardinals: Finite, Countable, and Uncountable....Pages 77-107
Cardinal Arithmetic and the Cantor Set....Pages 109-129
Orders and Order Types....Pages 131-147
Dense and Complete Orders....Pages 149-174
Well-Orders and Ordinals....Pages 175-198
Alephs, Cofinality, and the Axiom of Choice....Pages 199-219
Posets, Zorn’s Lemma, Ranks, and Trees....Pages 221-243
Postscript II: Infinitary Combinatorics....Pages 245-250
Front Matter....Pages 251-253
Interval Trees and Generalized Cantor Sets....Pages 255-264
Real Sets and Functions....Pages 265-279
The Heine–Borel and Baire Category Theorems....Pages 281-299
Cantor–Bendixson Analysis of Countable Closed Sets....Pages 301-311
Brouwer’s Theorem and Sierpinski’s Theorem....Pages 313-319
Borel and Analytic Sets....Pages 321-343
Postscript III: Measurability and Projective Sets....Pages 345-355
Front Matter....Pages 357-359
Paradoxes and Resolutions....Pages 361-367
Front Matter....Pages 357-359
Zermelo–Fraenkel System and von Neumann Ordinals....Pages 369-398
Postscript IV: Landmarks of Modern Set Theory....Pages 399-412
Back Matter....Pages 413-444