دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Sabu Thomas (editor). Anu Surendran (editor)
سری:
ISBN (شابک) : 0128184507, 9780128184509
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 532
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Self-Healing Polymer-Based Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های مبتنی بر پلیمر خود ترمیم شونده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستم های مبتنی بر پلیمرهای خود ترمیم شونده همه جنبه های مواد پلیمری خود ترمیم شونده را ارائه می دهد، اطلاعات دقیقی در مورد اصول، روش های آماده سازی، فناوری، و کاربردها ارائه می دهد و از آخرین وضعیت استفاده می کند. تحقیقات هنر.
این کتاب با معرفی سیستمهای پلیمری خود ترمیم شونده، با توضیح کامل مفاهیم اساسی، چالشها، مکانیسمها، جنبشی و ترمودینامیک، و انواع شیمی درگیر آغاز میشود. بخش دوم کتاب به بررسی دسته های اصلی مواد پلیمری خود ترمیم شونده می پردازد و به نوبه خود مواد مبتنی بر الاستومری، پایه ترموپلاستیک و بر پایه ترموست را بررسی می کند. پس از آن مجموعه ای از فصل ها به بررسی آخرین پیشرفت ها می پردازد، از جمله نانوذرات، پوشش ها، حافظه شکل، مواد زیستی خود ترمیم شونده، آینومرها، پلیمرهای فوق مولکولی، خود ترمیمی ناشی از نور و حرارت، کارایی التیام، تجزیه و تحلیل چرخه زندگی، و خصوصیات. . در نهایت، برنامه های کاربردی جدید ارائه و توضیح داده شده است.
این کتاب به عنوان یک منبع ضروری برای محققان دانشگاهی، دانشمندان و دانشجویان تحصیلات تکمیلی در زمینه خواص پلیمر، مواد خود ترمیم شونده، علوم پلیمر، شیمی پلیمر، و علم مواد در صنعت، این کتاب حاوی اطلاعات بسیار ارزشمندی برای متخصصان، طراحان و مهندسان تحقیق و توسعه است که به دنبال ترکیب خواص خود ترمیمی در مواد، محصولات یا اجزای خود هستند.
Self-Healing Polymer-Based Systems presents all aspects of self-healing polymeric materials, offering detailed information on fundamentals, preparation methods, technology, and applications, and drawing on the latest state-of-the-art research.
The book begins by introducing self-healing polymeric systems, with a thorough explanation of underlying concepts, challenges, mechanisms, kinetic and thermodynamics, and types of chemistry involved. The second part of the book studies the main categories of self-healing polymeric material, examining elastomer-based, thermoplastic-based, and thermoset-based materials in turn. This is followed by a series of chapters that examine the very latest advances, including nanoparticles, coatings, shape memory, self-healing biomaterials, ionomers, supramolecular polymers, photoinduced and thermally induced self-healing, healing efficiency, life cycle analysis, and characterization. Finally, novel applications are presented and explained.
This book serves as an essential resource for academic researchers, scientists, and graduate students in the areas of polymer properties, self-healing materials, polymer science, polymer chemistry, and materials science. In industry, this book contains highly valuable information for R&D professionals, designers, and engineers, who are looking to incorporate self-healing properties in their materials, products, or components.
Cover Copyright Contents List of Contributors 1 Self-healing polymeric systems—fundamentals, state of art, and challenges 1.1 Introduction 1.1.1 Extrinsic self-healing in polymeric systems 1.1.2 Intrinsic self-healing in polymeric systems 1.2 Role of nanofillers in self-healing polymeric systems 1.3 Key developments in the field of self-healing polymeric systems 1.4 Challenges for fabricating self-healing materials based on polymeric systems 1.5 Conclusions References 2 Types of chemistries involved in self-healing polymeric systems 2.1 Introduction: chemical aspects in self-healing process 2.1.1 Extrinsic and intrinsic self-healing 2.2 Key requirements of self-healing process 2.3 Dynamic covalent network in self-healing 2.4 Thermoreversible Diels–Alder and retro Diels–Alder chemistry 2.5 Photoinduced self-healing: [2+2] cycloaddition 2.5.1 [4+4] Cycloaddition reactions 2.6 Chemical transformations involved in self-healing 2.6.1 Thiol-ene click chemistry 2.6.2 Dynamic exchange of disulfide bonds 2.6.3 Dynamic chemistry of selenium 2.7 Reversible covalent reaction involved in self-healing 2.7.1 Dynamic reversible boronate ester bond 2.7.2 Dynamic reversibility of hindered urea bond 2.7.3 Dynamically reversible alkoxyamines fission/radical recombination 2.7.4 Reversible dynamic covalent Schiff-base (imine) linkage-based self-healing chemistry 2.7.5 Reversible covalent acylhydrazone bond in self-healing chemistry 2.8 Chemical transformations through involved reaction in self-healing 2.8.1 Exchangeable hydrazide Michael adduct linkages 2.8.2 Dynamic siloxane bond exchange 2.8.3 Dynamic covalent exchange network in polyesters 2.8.4 Self-healing based on exchangeable reactions involving hypervalent iodine 2.9 Supramolecular noncovalent interaction 2.9.1 Hydrogen-bonding-based self-healing 2.9.2 Self-healing involved through electrostatic interactions 2.9.2.1 Ionomeric or ionic mechanism 2.9.2.2 Self-healing through ionic salts 2.9.2.3 Magnesium ions (Mg2+)-based self-healing mechanism 2.9.2.4 Calcium ions (Ca2+)-based self-healing mechanism 2.9.2.5 Frustrated Lewis pair polymers as responsive self-healing gels 2.9.3 Self-healing based on van der Waals force of attraction 2.9.4 Reversible metallosupramolecular polymer 2.9.5 Host–guest interactions 2.9.6 π-Interactions based self-healing polymer 2.9.7 Hydrophobic interactions 2.9.8 Interpenetrating polymer network for self-healing 2.10 Chemistries involved in microcapsule-based self-healing polymeric system 2.10.1 Microcapsule mediated ring-opening metathesis polymerization 2.10.2 Azide-alkyne click chemistry 2.10.3 Controlled radical polymerization in microcapsule system 2.10.3.1 Other microcapsule-embedded systems 2.10.4 Vascular-based self-healing system 2.10.4.1 Macrovascular system 2.10.4.2 Microvascular-based self-healing 2.11 Conclusions References 3 Self-healing polymers: from general basics to mechanistic aspects 3.1 Introduction 3.2 General mechanism of self-healing polymers 3.3 Concepts for the design of self-healing polymers 3.4 Extrinsic self-healing polymers 3.5 Intrinsic self-healing polymers 3.6 Other mechanistic aspects 3.7 Conclusions References 4 Shape memory-assisted self-healing polymer systems 4.1 Introduction 4.2 Shape memory and self-healing mechanisms 4.2.1 Shape memory mechanism 4.2.2 Intrinsic self-healing of polymers 4.2.2.1 Covalent self-healing 4.2.2.2 Noncovalent self-healing 4.3 Shape memory-assisted self-healing 4.3.1 Thermoplastic polymers 4.3.2 Elastomers 4.3.3 Thermoset polymers 4.3.4 Extrinsic shape memory-assisted self-healing 4.4 Applications 4.5 Conclusions References 5 Characterization of self-healing polymeric materials 5.1 Introduction 5.2 Methods for evaluating self-healing behavior of the polymeric composites 5.2.1 Qualitative methods 5.2.1.1 Visualization techniques 5.2.1.2 Acoustical microscopy 5.2.1.3 X-ray microtomography 5.2.1.4 Evaluation of self-healing reaction heat 5.2.2 Quantitative methods 5.2.2.1 Tensile testing 5.2.2.2 Bending testing 5.2.2.3 Tapered double cantilever beam 5.2.2.4 Ballistic impact 5.2.2.5 Dynamic mechanical thermal analyses 5.3 Methods for evaluating self-healing behavior of the polymeric coatings 5.3.1 Qualitative methods 5.3.1.1 Visual inspection and optical microscopy 5.3.1.2 Scanning electron microscopy 5.3.1.3 Confocal microscopy 5.3.1.4 Scanning electrochemical microscopy 5.3.1.5 Scanning vibrating electrode technique 5.3.2 Quantitative methods 5.3.2.1 Healing of hydrophobicity 5.3.2.2 Atomic force microscopy 5.3.2.3 Tribological properties 5.3.2.4 Corrosion assessment tests 5.3.2.4.1 Potentiostatic and potentiodynamic techniques 5.3.2.4.2 Electrochemical impedance spectroscopy 5.4 Summary and outlook References 6 Role of nanoparticles in self-healing of polymeric systems 6.1 Introduction 6.2 Self-healing polymer using metal nanoparticles 6.3 Self-healing polymer using inorganic nanoparticles 6.4 Self-healing polymer using organic nanoparticles 6.4.1 Self-healing by shape-memory organic nanoparticles 6.4.2 Self-healing by organic micro- or nanocapsules 6.4.3 Evaluation of self-healing capability 6.4.3.1 Crack growth method 6.4.3.2 Beam on elastic foundation method 6.4.3.3 Direct tensile tests 6.4.4 Introduction of a real application of self-healing nanocapsules 6.5 Further advice References 7 Self-healing biomaterials based on polymeric systems 7.1 Introduction 7.2 Self-healing biomaterials in tissue engineering 7.2.1 Self-healing hydrogels 7.2.1.1 Mechanism 7.2.1.1.1 Noncovalent bonding 7.2.1.1.1.1 Electrostatic interaction 7.2.1.1.1.2 Hydrogen bonding 7.2.1.1.1.3 Host–guest interaction 7.2.1.1.1.4 Metal–ligand coordination 7.2.1.1.1.5 Hydrophobic interactions 7.2.1.1.1.6 Crystallization 7.2.1.1.2 Dynamic covalent bonding 7.2.1.1.2.1 Diels–Alder reaction 7.2.1.1.2.2 Thiol–disulfide exchange 7.2.1.1.2.3 Imine bonds 7.2.1.1.2.4 Acylhydrazone bonds 7.2.1.1.2.5 Oxime bonds 7.2.1.2 The evaluation of self-healing efficiency 7.2.1.3 Applications in tissue engineering 7.2.1.3.1 Tissue adhesives 7.2.1.3.2 Cell scaffolds 7.2.2 Self-healing films 7.2.2.1 Mechanism 7.2.2.2 Applications in tissue engineering 7.2.2.2.1 Cell coculture 7.2.2.2.2 Biosensor 7.3 Self-healing biomaterials in drug/gene delivery systems 7.3.1 Injectable hydrogels 7.3.2 Particles and capsules 7.4 Self-healing functional surfaces 7.4.1 Antibacterial and antifouling surfaces 7.4.2 Surface-mediated drug delivery 7.4.3 Challenges 7.5 The characterization of self-healing 7.6 New opportunities and challenges 7.6.1 3D printing 7.6.2 Wound dressing 7.6.3 Electronic skin References 8 Self-healing Diels–Alder engineered thermosets 8.1 Fundamentals of self-healing 8.2 Types of self-healing systems 8.3 Diels–Alder reaction 8.3.1 Kinetics and thermodynamics of Diels–Alder reaction 8.3.2 Diels–Alder reaction of furan/maleimide 8.4 Diels–Alder-based healable thermosets 8.4.1 Applications of Diels–Alder-based self-healing networks 8.4.1.1 Healable Diels–Alder-based hydrogels 8.4.1.2 Diels–Alder-based healable rubbers 8.4.1.3 Diels–Alder-based healable polymer composites 8.4.1.3.1 Healing of Diels–Alder-based polymer composites by nonthermal methods 8.4.1.3.2 Self-healing Diels–Alder-based nanocomposites 8.4.1.3.2.1 Graphene-based Diels–Alder nanocomposites 8.4.1.3.4.2 Carbon nanotube-based Diels–Alder nanocomposites 8.4.1.3.4.3 Silver nanowires-based Diels–Alder nanocomposites 8.4.1.4 Healable Diels–Alder-based polymer coatings 8.4.1.5 Diels–Alder-based healable polymer adhesives 8.4.1.6 Diels–Alder-based self-healing actuators and robots 8.5 Summary and outlook References 9 Self-healing polymeric coatings containing microcapsules filled with active materials 9.1 Introduction 9.2 Requirements for designing a self-healing coating 9.3 Microcapsule-based self-healing systems 9.4 Microcapsule preparation methods 9.5 Materials selection for core and shell components of microcapsules 9.6 Limitations and shortcomings of microcapsule-embedded coatings 9.7 Summary References 10 Capsule-based self-healing polymers and composites 10.1 Introduction 10.2 Capsule synthesis and characterization 10.3 Self-healing polymers and composites 10.4 Self-healing coatings 10.5 Conclusions and future trends References 11 Ionomers as self-healing materials 11.1 Introduction 11.2 Materials, chemistry, and fundamentals 11.3 The self-healing mechanisms 11.4 Activation methods 11.5 Applications 11.6 Summary References 12 Self-healing materials utilizing supramolecular interactions 12.1 Intrinsic self-healing systems 12.1.1 Supramolecular bonds 12.1.2 Hydrogen bonding 12.1.3 Metal coordination 12.1.4 Host–guest interactions 12.1.5 Dynamic covalent chemistry 12.2 Main-chain supramolecular polymers 12.2.1 Supramolecular polymerizations 12.2.2 Isodesmic supramolecular polymerization 12.2.3 Ring-chain supramolecular polymerization 12.2.4 Cooperative supramolecular polymerization 12.2.5 Directional noncovalent interactions 12.3 Self-healing materials driven by metal coordination 12.3.1 Early development 12.3.2 Network formation and self-healing 12.3.3 Ligand systems 12.3.4 Naturally occuring and bioinspired self-healing systems 12.3.5 Photoresponsive systems 12.3.6 Self-assembly: directional bonding approaches 12.3.6.1 Metal-organic framework 12.4 Self-healing mediated by electrostatic interactions 12.4.1 Electrostatic self-assembly 12.4.2 Bulk ionomer self-healing materials 12.4.3 Self-healing poly(ionic liquids) 12.5 Host–guest interactions in self-healing materials 12.5.1 Introduction to host–guest interactions 12.5.2 Mechanism of self-healing based on host–guest interactions 12.5.3 Design of self-healing, host–guest materials 12.5.4 Self-healing materials utilizing cyclodextrin 12.5.5 Self-healing materials utilizing crown ethers 12.5.6 Self-healing materials utilizing cucurbiturils 12.5.7 Enhancing mechanical properties in host–guest self-healing materials 12.6 Dynamic covalent self-healing materials 12.6.1 Introduction to dynamic covalent bonds 12.6.2 Self-healing from dynamic condensation reactions 12.6.2.1 Acylhydrazone bonds 12.6.2.2 Boronate ester bonds 12.6.2.3 Imine and enamine bonds 12.6.3 Reversible cycloaddition reactions 12.6.3.1 Reversible Diels–Alder 12.6.4 DCB exchange through chemical or catalytic stimuli 12.6.5 Photo-induced dynamic covalent self-healing 12.7 Hydrogen bonding in self-healing systems 12.7.1 Hydrogen bonding 12.7.2 Self-complementary hydrogen bonding in self-healing materials 12.7.3 Self-healing polymers utilizing weak hydrogen bonding 12.7.4 Combination of hydrogen bonding and dynamic covalent bonds 12.8 Conclusions and future outlook References 13 Self-healing hydrogels 13.1 Introduction 13.1.1 Gel and hydrogel 13.1.2 Hydrosol and hydrogel 13.2 Self-healing 13.3 Self-healing and its characterization 13.3.1 Extrinsic self-healing 13.3.2 Intrinsic self-healing 13.4 Chemistry involved in intrinsic self-healing 13.4.1 Reversible covalent bonds 13.4.1.1 Reversible cycloaddition reactions 13.4.1.2 Exchange reactions 13.4.1.3 Stable free radical-mediated reshuffle reactions 13.4.1.4 Heterocyclic compounds and carbohydrates in self-healing polyurethanes 13.4.2 Supramolecular chemistry 13.4.2.1 Hydrogen bonds 13.4.2.2 π–π Stacking interactions 13.4.2.3 Metal–ligand interaction 13.4.2.4 Ionic interaction 13.4.2.5 Host–guest interaction 13.5 Self-healing process 13.5.1 Autonomic self-healing hydrogels 13.5.2 Nonautonomic self-healing hydrogels 13.6 Classification of self-healing hydrogels 13.6.1 Inorganic-based self-healing hydrogels 13.6.2 Polymer-based self-healing hydrogels 13.6.3 Nanocomposite-based self-healing hydrogels 13.7 Mechanism of self-healing of hydrogels 13.7.1 Physically (diffusion) self-healing mechanism 13.7.2 Chemically self-healing mechanism 13.8 Factors impact on self-healing mechanism 13.8.1 Separation time 13.8.2 Self-healing time 13.8.3 Temperature 13.8.4 Chain length 13.8.5 The content of nanomaterials 13.9 Sacrificial bonds 13.10 Nature and mechanisms of sacrificial bonds 13.10.1 Sacrificial bonds in biological materials 13.10.2 Constitutive theories of sacrificial bonding systems 13.11 Inspired sacrificial bonds in artificial polymeric materials 13.11.1 Sacrificial covalent bonds 13.11.2 Sacrificial noncovalent bonds 13.12 Sacrificial bonds in hydrogels 13.12.1 Sacrificial ionic bonds 13.12.2 Sacrificial hydrogen bonds 13.12.3 Sacrificial metal–ligand coordination bonds 13.12.4 Sacrificial hydrophobic interactions 13.12.5 Sacrificial host–guest complexes 13.13 Metal–ligand polymer hydrogels 13.13.1 Cross-linked hydrogels via metal coordination 13.13.2 Covalently cross-linked hydrogels 13.13.3 Hybrid cross-linked hydrogels 13.14 Self-healing gels mechanism based on constitutional dynamic chemistry 13.15 Natural polymer-based hydrogels 13.15.1 Alginate 13.15.2 Agarose-based self-healing hydrogels 13.15.3 Chitosan 13.15.4 Cellulose 13.15.5 Hydroxyethyl cellulose 13.15.6 Dextrin-based self-healing hydrogels 13.15.7 Guar gum-based self-healing hydrogels 13.15.8 Gelatin-based self-healing hydrogels 13.15.9 Glycogen-based self-healing hydrogels 13.15.10 Hyaluronic acid-based hydrogels 13.15.11 Xanthan-gum-based self-healing hydrogels 13.16 Recent development in miscellaneous application fields 13.16.1 Superabsorbent hybrid hydrogels 13.16.2 Conductive polymer hydrogels 13.16.3 Polysaccharide-based natural hydrogels 13.16.4 Protein-based hydrogels 13.16.5 Hydrogels for energy applications References 14 A continuum mechanics approach to the healing efficiency of extrinsic self-healing polymers 14.1 Introduction 14.2 Finite deformation kinematics: elastic, plastic, damage, and healing in polymers 14.3 Plastic deformation in polymers 14.4 Continuum damage and healing mechanics 14.4.1 Scalar damage-healing variables for isotropic problems 14.4.2 Anisotropic damage-healing problems 14.5 Physically consistent evolution laws for the damage and healing processes 14.5.1 Thermodynamic consistent damage and healing model 14.5.2 Mechanisms-based phenomenological healing models 14.6 Concluding remarks References 15 Self-healing fiber-reinforced polymer composites for their potential structural applications 15.1 Introduction 15.2 Scope of self-healing in fiber-reinforced polymer composites 15.3 Extrinsic self-healing approaches for fiber-reinforced polymer composites 15.3.1 Microcapsule-based self-healing 15.3.2 Hollow fiber-based self-healing 15.3.3 Microvascular-based self-healing 15.4 Intrinsic self-healing approach for fiber-reinforced polymer composites 15.5 Thermoreversible healing of FRP 15.6 Assessment of self-healing efficiency for fiber-reinforced polymer composites 15.7 Conclusions References 16 Self-healing polymeric coating for corrosion inhibition and fatigue repair 16.1 Background of self-healing and corrosion inhibition 16.2 Self-healing and corrosion inhibitor materials 16.2.1 Self-healing materials 16.2.1.1 Single catalyst with microcapsules 16.2.1.2 Dual capsule-based system 16.2.2 Corrosion inhibitors 16.2.2.1 Types of corrosion inhibitors 16.2.2.2 Anodic corrosion inhibitors 16.2.2.3 Nitrites 16.2.2.4 Molybdates 16.2.2.5 Cathodic corrosion inhibitor 16.2.2.6 Organic inhibitors 16.3 Case study for self-healing material and corrosion inhibitors 16.3.1 Green synthesis of self-healing corrosion-inhibiting coating using neem oil as self-healing and corrosion inhibitor 16.3.2 Synthesis of nanocapsules using ultrasound and conventional method 16.4 Polymer capsules-based self-healing coating for corrosion inhibition 16.4.1 Self-healing capsules based on polymeric materials 16.5 Nanocontainer-based self-healing approach for corrosion inhibition 16.6 Clay-based self-healing materials for corrosion inhibition 16.6.1 Commercial applications and future prospectus Conclusions References 17 Applications of self-healing polymeric systems 17.1 Introduction 17.2 Application in wound healing 17.3 Application in tissue engineering 17.4 Application in three-dimensional printing 17.5 Application in drug delivery 17.6 Application in anticorrosion coating 17.7 Application in electronic application 17.8 Application in aerospace applications 17.9 Conclusions References Index Back Cover