دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: B. Thuraisngham, M. Kantarcioglu, L. Khan سری: ISBN (شابک) : 9780367534103, 9781003081845 ناشر: سال نشر: 2022 تعداد صفحات: 457 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Secure Data Science: Integrating Cyber Security and Data Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده امن: ادغام امنیت سایبری و علم داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Acknowledgments Permissions Authors 1. Introduction 1.1 OVERVIEW 1.2 Big Data Analytics, Data Science, and Machine Learning 1.3 Supporting Technologies 1.4 Data Science for Cyber Security 1.5 Security and Privacy Enhanced Data Science 1.6 Access Control and Data Science 1.7 Organization of This Book 1.8 Next Steps Reference Part I: Supporting Technologies for Secure Data Science Introduction to Part I 2. Data Security and Privacy 2.1 Introduction 2.2 Security Policies 2.2.1 Access Control Policies 2.2.1.1 Authorization-based Access Control Policies 2.2.1.1.1 Positive authorization 2.2.1.1.2 Negative authorization 2.2.1.1.3 Conflict resolution 2.2.1.1.4 Strong and weak authorization 2.2.1.1.5 Propagation of authorization rules 2.2.1.1.6 Special rules 2.2.1.1.7 Consistency and completeness of rules 2.2.1.2 Role-based Access Control 2.2.1.3 Usage Control 2.2.1.4 Attribute-based Access Control 2.2.2 Administration Policies 2.2.3 Identification and Authentication 2.2.4 Auditing a Database System 2.2.5 Views for Security 2.3 Policy Enforcement and Related Issues 2.3.1 SQL Extensions for Security 2.3.2 Query Modification 2.3.3 Discretionary Security and Database Functions 2.4 Data Privacy 2.5 Summary and Directions References 3. Data Mining and Security 3.1 Introduction 3.2 Data Mining Techniques 3.2.1 Overview 3.2.2 Artificial Neural Networks 3.2.3 Support Vector Machines 3.2.4 Markov Model 3.2.4.1 Example 3.2.5 Association Rule Mining (ARM) 3.2.6 Decision Trees 3.2.7 Multi-class Problem 3.2.7.1 One-vs-One 3.2.7.2 One-vs-All 3.3 Data Mining, Cyber Security, and Privacy 3.3.1 Cyber Security Threats 3.3.1.1 Cyber-Terrorism, Insider Threats, and External Attacks 3.3.1.2 Malicious Intrusions 3.3.1.3 Credit Card Fraud and Identity Theft 3.3.1.4 Attacks on Critical Infrastructures 3.3.2 Data Mining for Cyber Security 3.3.3 Security and Privacy-Enhanced Data Mining 3.4 Summary and Directions References 4. Big Data, Cloud, Semantic Web, and Social Network Technologies 4.1 Introduction 4.2 Big Data Management and Analytics Tools and Technologies 4.2.1 Infrastructure Tools to Host Big Data Systems 4.2.1.1 Apache Hadoop 4.2.1.2 MapReduce 4.2.1.3 Apache Spark 4.2.1.4 Apache Pig 4.2.1.5 Apache Storm 4.2.1.6 Apache Flink 4.2.1.7 Apache Kafka 4.2.2 Big Data Management and Analytics Tools 4.2.2.1 Apache Hive 4.2.2.2 Google BigQuery 4.2.2.3 NoSQL Database 4.2.2.4 Google BigTable 4.2.2.5 Apache HBase 4.2.2.6 MongoDB 4.2.2.7 Apache Cassandra 4.2.2.8 Apache CouchDB 4.2.2.9 Oracle NoSQL Database 4.2.2.10 Weka 4.2.2.11 Apache Mahout 4.3 Cloud Computing 4.3.1 Cloud Computing Models 4.3.1.1 Cloud Deployment Models 4.3.1.2 Service Models 4.3.2 Virtualization 4.3.3 Cloud Storage and Data Management 4.3.4 Cloud Platforms 4.3.4.1 Amazon Web Services' DynamoDB 4.3.4.2 Microsoft Azure's Cosmos DB 4.3.4.3 IBM's Cloud-Based Big Data Solutions 4.3.4.4 Google's Cloud-Based Big Data Solutions 4.4 Semantic Web 4.4.1 Semantic Web Technologies 4.4.1.1 XML 4.4.1.2 RDF 4.4.1.3 SPARQL 4.4.1.4 OWL 4.4.1.5 Description Logics 4.4.1.6 SWRL 4.4.2 Semantic Web and Security 4.4.2.1 XML Security 4.4.2.2 RDF Security 4.4.2.3 Security and Ontologies 4.4.2.4 Secure Query and Rules Processing 4.4.3 Cloud Computing Frameworks Based on Semantic Web Technologies 4.4.3.1 RDF Integration 4.4.3.2 Provenance Integration 4.5 Analyzing and Securing Social Networks 4.5.1 Introduction to Social Networks 4.5.2 Social Media Analytics Applications 4.5.2.1 Applications Extracting Demographics 4.5.2.2 Sentiment Analysis 4.5.2.3 Detecting Communities of Interest 4.5.2.4 Determining Leaders 4.5.2.5 Detecting Persons of Interest 4.5.2.6 Determining Political Affiliation 4.5.3 Data Mining for Social Networks 4.5.3.1 Association Rule Mining 4.5.3.2 Classification 4.5.3.3 Clustering 4.5.3.4 Anomaly Detection 4.5.3.5 Web Mining 4.5.4 Security and Privacy 4.6 Summary and Directions References 5. Big Data Analytics, Security, and Privacy 5.1 Introduction 5.2 Issues in Big Data Security and Privacy 5.2.1 Background for the Workshop 5.2.2 Big Data Management and Analytics 5.2.3 Security and Privacy 5.3 Research Challenges for Big Data Security and Privacy 5.3.1 Workshop Objectives 5.3.2 Philosophy for Big Data Security and Privacy 5.3.3 Examples of Privacy-Enhancing Techniques 5.3.4 Multi-objective Optimization Framework for Data Privacy 5.3.5 Multidisciplinary Approaches 5.3.6 Big Data Analytics for Cyber Security 5.3.7 Cyber Security for Big Data Analytics 5.4 Summary and Directions References Conclusion to Part I Part II: Data Science for Cyber Security Introduction to Part II 6. Data Science for Malicious Executables 6.1 Introduction 6.2 Malicious Executables 6.2.1 Architecture 6.2.2 Related Work 6.2.3 Hybrid Feature Retrieval Model 6.3 Design of the Data Mining Tool 6.3.1 Feature Extraction Using n-Gram Analysis 6.3.1.1 A Binary n-Gram Feature 6.3.1.2 Feature Collection 6.3.1.3 Feature Selection 6.3.1.4 Assembly n-Gram Feature 6.3.1.5 DLL Function Call Feature 6.3.2 Details of the Hybrid Feature Retrieval Model 6.3.2.1 Description of the Model 6.3.2.2 The Assembly Feature Retrieval (AFR) Algorithm 6.3.2.3 Feature Vector Computation and Classification 6.4 Evaluation and Results 6.4.1 Experiments 6.4.2 Dataset 6.4.3 Experimental Setup 6.4.4 Results 6.4.4.1 Accuracy 6.4.4.1.1 Dataset1 6.4.4.1.2 Dataset2 6.4.4.1.3 Statistical significance test 6.4.4.1.4 DLL call feature 6.4.4.2 ROC Curves 6.4.4.3 False Positive and False Negative 6.4.4.4 Running Time 6.4.4.5 Training and Testing with Boosted J48 6.4.5 Example Run 6.5 Big Data Analytics 6.6 Summary and Directions References 7. Stream Analytics for Malware Detection 7.1 Introduction 7.2 Stream Mining 7.2.1 Architecture 7.2.2 Related Work 7.2.3 Our Approach 7.2.4 Overview of Novel Class Detection 7.2.5 Classifiers Used 7.3 Details of Novel Class Detection 7.3.1 Definitions 7.3.2 Novel Class Detection 7.3.2.1 Saving the Inventory of Used Spaces during Training 7.3.2.1.1 Clustering 7.3.2.1.2 Storing the cluster summary information 7.3.2.2 Outlier Detection and Filtering 7.3.2.2.1 Filtering 7.3.2.3 Detecting Novel Class 7.3.2.3.1 Computing the set of novel class instances 7.3.2.3.2 Speeding up the computation 7.3.2.3.3 Time complexity 7.3.2.3.4 Impact of evolving class labels on ensemble classification 7.4 Evaluation 7.4.1 Datasets 7.4.1.1 Synthetic Data with Only Concept-Drift (SynC) 7.4.1.2 Synthetic Data with Concept-Drift and Novel-Class (SynCN) 7.4.1.3 Real Data - KDD Cup 99 Network Intrusion Detection 7.4.1.4 Real Data - Forest Cover (UCI Repository) 7.4.2 Experimental Setup 7.4.2.1 Baseline Method 7.4.3 Performance Study 7.4.3.1 Evaluation Approach 7.4.3.2 Results 7.4.3.3 Running Time 7.5 Security Applications and Malware Detection 7.6 Summary and Directions References 8. Cloud-Based Data Science for Malware Detection 8.1 Introduction 8.2 Malware Detection 8.2.1 Malware Detection as a Data Stream Classification Problem 8.2.2 Cloud Computing for Malware Detection 8.2.3 Our Contributions 8.3 Related Work 8.4 Design and Implementation of the System 8.4.1 Ensemble Construction and Updating 8.4.2 Error Reduction Analysis 8.4.3 Empirical Error Reduction and Time Complexity 8.4.4 Hadoop/MapReduce Framework 8.5 Malicious Code Detection 8.5.1 Overview 8.5.2 Non-distributed Feature Extraction and Selection 8.5.3 Distributed Feature Extraction and Selection 8.6 Experiments 8.6.1 Datasets 8.6.1.1 Synthetic Dataset 8.6.1.2 Botnet Dataset 8.6.1.3 Malware Dataset 8.6.2 Baseline Methods 8.6.3 Hadoop Distributed System Setup 8.7 Discussion 8.8 Summary and Directions References 9. Stream Analytics for Insider Threat Detection 9.1 Introduction 9.2 Survey of Insider Threat and Stream Mining 9.2.1 Insider Threat Detection 9.2.2 Stream Mining 9.2.3 Big Data Techniques for Scalability 9.3 Ensemble-Based Insider Threat Detection 9.3.1 Ensemble Learning 9.3.2 Ensemble for Unsupervised Learning 9.3.3 Ensemble for Supervised Learning 9.3.4 Unsupervised Learning 9.3.4.1 GBAD-MDL 9.3.4.2 GBAD-P 9.3.4.3 GBAD-MPS 9.4 Insider Threat Detection for Sequence Data 9.4.1 Classifying Sequence Data 9.4.1.1 Incremental Learning 9.4.1.2 Ensemble Learning 9.4.1.3 Model Update 9.4.2 Unsupervised Stream-Based Sequence Learning (USSL) 9.4.2.1 Construct the LZW Dictionary by Selecting the Patterns in the Data Stream 9.4.2.2 Constructing the Quantized Dictionary 9.4.3 Anomaly Detection 9.5 Summary and Directions References Conclusion to Part II Part III: Security and Privacy-enhanced Data Science Introduction to Part III 10. Adversarial Support Vector Machine Learning 10.1 Introduction 10.2 Related Work 10.3 Our Approach 10.4 The Problem and the Attacks 10.4.1 Problem Definition 10.4.2 Adversarial Attack Models 10.4.2.1 Free-range Attack 10.4.2.2 Restrained Attack 10.5 Adversarial SVM Learning 10.5.1 AD-SVM against Free-range Attack Model 10.5.2 AD-SVM against Restrained Attack Model 10.6 Experiments 10.6.1 Our Approach 10.6.2 Experiments on Artificial Dataset 10.6.2.1 Data Points Well Separated 10.6.2.2 Data Cluttered Near Separating Boundary 10.6.3 Experiments on Real Datasets 10.6.4 Setting Cf, Cξ, and Cδ 10.7 Summary and Directions References 11. Adversarial Learning Using Relevance Vector Machine Ensembles 11.1 Introduction 11.2 Related Work 11.3 Relevance Vector Machine 11.4 Kernel Parameter Fitting 11.4.1 Our Approach 11.4.2 Kernel Parameter Vector 11.4.3 Attacks Minimizing the Log-Likelihood 11.4.4 Training Issues 11.4.5 Adversarial RVM Learning Algorithm 11.5 Experimental Results 11.5.1 Datasets 11.5.2 Experiments on the Artificial Dataset 11.5.3 Experiments on Real Datasets 11.6 Summary and Directions References 12. Privacy Preserving Decision Trees 12.1 Introduction 12.2 Related Work and Motivation 12.3 Privacy Metrics 12.4 Overview of Decision Tree Construction 12.4.1 Splitting Criterion 12.4.2 Discretizing Continuous Attributes 12.4.3 Stopping Criteria 12.5 Naive Bayes Classifier Construction over Perturbed Data 12.5.1 Naive Bayes Classifier 12.5.2 Over Perturbed Numeric Data 12.6 Privacy Preserving Decision Tree C4.5 (PPDTC4.5) 12.6.1 Motivation 12.6.2 Splitting Criterion Using Threshold 12.6.3 Splitting Training Data by Threshold 12.6.4 Classifying the Original Instance 12.6.5 Splitting Criterion 12.6.6 Splitting Training Data Set Using Random Path Selection 12.6.7 Classifying the Perturbed Instance Using Random Path Selection 12.7 Experimental Results 12.7.1 Our Approach 12.7.2 Local vs. Global Data Mining 12.7.3 Reconstruction-Based Approaches Results 12.7.4 PPDTC4.5 Classifier Accuracy 12.7.5 Algorithm Complexity 12.8 Summary and Directions References 13. Towards a Privacy Aware Quantified Self Data Management Framework 13.1 Introduction 13.2 Privacy-Aware Quantified Self-Data Management Framework 13.2.1 Motivational scenario 13.2.2 Architecture Overview 13.2.3 Related Work 13.2.3.1 Access Control Policies, Privacy, and Usability 13.2.3.2 Personal Data Stores 13.2.3.3 Mining Quantified Self-Data 13.2.3.4 Differential Privacy and Privacy-Preserving Data Mining 13.3 High Level Design of The Framework 13.3.1 Privacy-Aware Data Collection 13.3.2 Privacy-Aware Data Storage and Access 13.3.3 Privacy-Aware Data Analytics and Sharing 13.4 Novel Directions 13.4.1 Security of User Devices 13.5 Behavioral Aspects 13.6 Toward a Formal Framework 13.7 Summary and Directions References 14. Data Science, COVID-19 Pandemic, Privacy, and Civil Liberties 14.1 Introduction 14.2 Data Mining, National Security, Privacy, and Civil Liberties 14.3 Data Science for COVID-19 Detection and Prediction 14.4 Privacy Implications and Potential Solutions 14.5 Revisiting the Multi-objective Framework for Data Privacy 14.6 Role of Confidentiality and Access Control 14.7 What about Civil Liberties? 14.8 Balancing Safety and Security vs. Privacy and Civil Liberties 14.9 Summary and Directions References Conclusion to Part III Part IV: Access Control and Data Science Introduction to Part IV 15. Secure Cloud Query Processing Based on Access Control for Big Data Systems 15.1 Introduction 15.2 Our Approach 15.3 Related Work 15.4 Architecture 15.4.1 Data Generation and Storage 15.4.2 File Organization 15.4.3 Predicate Split 15.4.4 Split Using Explicit Type Information of Object 15.4.5 Split Using Implicit Type Information of Object 15.4.6 Access Control Models 15.5 MapReduce Framework 15.5.1 Overview 15.5.2 Input Files Selection 15.5.3 Cost Estimation for Query Processing 15.5.3.1 Ideal Model 15.5.3.1.1 Map input (MI) phase 15.5.3.1.2 Map output (MO) phase 15.5.3.1.3 Reduce input (RI) phase 15.5.3.1.4 Reduce output (RO) phase 15.5.3.2 Heuristic Model 15.5.4 Query Plan Generation 15.5.4.1 Computational Complexity of Bestplan 15.5.4.2 Problem Formulation 15.5.4.3 Search Space Size 15.5.4.4 Relaxed Bestplan Problem and Approximate Solution 15.5.5 Breaking Ties by Summary Statistics 15.5.6 MapReduce Join Execution 15.6 Results 15.6.1 Experimental Setup 15.6.1.1 Datasets 15.6.1.2 Baseline Frameworks 15.6.1.3 Hardware 15.6.1.4 Software 15.6.2 Evaluation 15.7 Security Extensions 15.7.1 Token-Based Access Control Model 15.7.2 Access Token Assignment 15.7.2.1 Final output of an Agent's ATs 15.7.2.2 Security Level Defaults 15.7.3 Conflicts 15.7.4 XACML-based Access Control 15.8 Summary and Directions References 16. Access Control-Based Assured Information Sharing in the Cloud 16.1 Introduction 16.2 System Design 16.2.1 Design Philosophy 16.2.2 Design of CAISS 16.2.2.1 Enhanced Policy Engine 16.2.2.2 Enhanced SPARQL Query Processor 16.2.2.3 Integration Framework 16.2.3 Limitations of CAISS 16.2.4 Design of CAISS++ 16.2.4.1 Centralized CAISS++ 16.2.4.2 Decentralized CAISS++ 16.2.4.3 Hybrid CAISS++ 16.2.4.4 Naming Conventions 16.2.4.5 Vertically Partitioned Layout 16.2.4.6 Hybrid Layout 16.2.4.7 Distributed processing of SPARQL 16.2.4.8 Framework Integration 16.2.4.9 Policy Specification and Enforcement 16.2.5 Extensions to the Design 16.2.5.1 Formal Policy Analysis 16.2.5.2 Extensions for Big Data-based Applications 16.3 Implementation Details 16.3.1 Prototype Implementations 16.3.1.1 Secure Data Storage and Retrieval in the Cloud 16.3.1.2 Secure SPARQL Query Processing on the Cloud 16.3.1.3 Pre-processing 16.3.1.4 Query Execution and Optimization 16.3.1.5 RDF Policy Engine 16.3.1.6 Assured Information Sharing Prototypes 16.3.2 Other Implementations 16.3.3 Implementation of the Demonstration Systems 16.3.3.1 Architecture 16.3.3.1.1 User interface layer 16.3.3.1.2 Policy engines 16.3.3.1.3 Data layer 16.3.3.2 Features of Our Policy Engine Framework 16.3.3.2.1 Policy reciprocity 16.3.3.2.2 Develop and scale policies 16.3.3.2.3 Justification of resources 16.3.3.2.4 Policy specification and enforcement 16.4 Related Work 16.4.1 Research Efforts 16.4.1.1 Secure Data Storage and Retrieval in the Cloud 16.4.1.2 SPARQL Query Processor 16.4.1.3 RDF-based Policy Engine 16.4.1.4 Hadoop Storage Architecture 16.4.1.5 Distributed Reasoning 16.4.1.6 Access Control and Policy Ontology Modeling 16.4.2 Commercial Developments 16.4.2.1 RDF Processing Engines 16.4.2.2 Semantic Web-based Security Policy Engines 16.5 Summary and Directions References 17. Access Control for Social Network Data Management 17.1 Introduction 17.2 Related Work 17.3 Modeling Social Networks Using Semantic Web Technologies 17.3.1 Type of Relationships 17.3.2 Modeling Personal Information 17.3.3 Modeling Personal Relationships 17.3.4 Modeling Resources 17.3.5 Modeling User/Resource Relationships 17.3.6 Modeling Actions 17.4 Security Policies for OSNs 17.4.1 Running Example 17.4.2 Access Control Policies 17.4.3 Filtering Policies 17.4.4 Admin Policies 17.5 Security Policy Specification 17.5.1 Policy Language 17.5.2 Authorizations and Prohibitions 17.5.2.1 Access Control Authorizations 17.5.2.2 Prohibitions 17.5.2.3 Admin Authorizations 17.5.3 Security Rules 17.6 Security Rule Enforcement 17.6.1 Our Approach 17.6.2 Admin Request Evaluation 17.6.3 Access Request Evaluation 17.7 Implementation of an Access Control Framework 17.8 Framework Architecture 17.9 Experiments 17.9.1 Data Generation 17.10 Scalability with Big Data and Cloud Technologies 17.11 Summary and Directions References 18. Inference and Access Control for Big Data 18.1 Introduction 18.2 Design of an Inference Controller 18.2.1 Architecture 18.2.1.1 User Interface Manager 18.2.1.2 Policy Manager 18.2.1.3 Inference Engine 18.2.1.4 Data controller 18.2.1.5 Provenance Controller 18.3 Inference Control Through Query Modification 18.3.1 Query Modification 18.3.2 Query Modification with Relational Data 18.3.2.1 Query Modification 18.3.3 SPARQL Query Modification 18.3.4 Query Modification for Enforcing Constraints 18.3.4.1 SPARQL Query Filter 18.3.4.2 Property Paths 18.3.4.3 Property Path Queries 18.3.4.4 Overview of Query Modification 18.3.4.5 Graph transformation of a SPARQL Query BGP 18.3.4.6 Match Pattern/ApplyPattern 18.3.4.6.1 Processing Rules 18.3.4.6.2 Enforcing Constraints by Graph Rewriting 18.4 Our Approach to the Implementation of the Inference Controller 18.5 Inference and Provenance 18.5.1 Examples 18.5.2 Approaches to the Inference Problem 18.5.2.1 Domain Restriction 18.5.2.2 Statistical Reasoning 18.5.2.2.1 Machine Learning Techniques 18.5.3 Inferences in Provenance 18.5.3.1 Implicit Information in Provenance 18.5.4 Use Cases of Provenance 18.5.4.1 Dataset Documentation 18.5.4.2 Pinpoint Errors in a Process 18.5.4.3 Identifying Private Information in Query Logs 18.5.4.4 Use Case: Who Said That? 18.5.4.5 Use Case: Cheating Dictator 18.5.5 Processing Rules 18.6 Implementation Details 18.6.1 Architecture 18.6.2 Provenance in a Healthcare Domain 18.6.2.1 Populating the Provenance Knowledge Base 18.6.2.2 Generating and Populating the Knowledge Base 18.6.2.3 Generating Workflows 18.6.2.4 Properties of the Workflow 18.6.3 Policy Management 18.6.3.1 Policy Screen 18.6.3.2 Parsing Process 18.6.3.3 High-Level Policy Translation 18.6.3.4 SWRL Rule Assembler 18.6.3.5 A SWRL Policy Translation 18.6.3.6 Description Logics Rule Assembler 18.6.3.7 Cardinality Restrictions 18.6.3.8 hasValue Restriction 18.6.3.9 Supporting Restrictions 18.6.3.9.1 A DL policy translation 18.6.3.10 Access Control Policy Assembler 18.6.3.11 An Access Control Policy Translation 18.6.3.12 Redaction Policy Assembler 18.6.3.13 A Redaction Policy Translation 18.6.4 Explanation Service Layer 18.7 Generators 18.7.1 Selecting background information 18.7.2 Background generator module 18.7.2.1 Patient Generator 18.7.2.2 Physician Generator 18.7.2.3 Hospital Generator 18.7.3 Miscellaneous generators 18.7.4 Workflow generator 18.7.5 Annotating the Workflow 18.7.6 Generating workflows 18.7.7 Incomplete information in the databases 18.8 Use Case: Medical Example 18.8.1 Semantic associations in the workflow 18.9 Implementing Constraints 18.9.1 Query modification for enforcing constraints 18.9.1.1 Query Filter 18.10 Next Generation Inference Controllers 18.11 Summary and Directions References 19. Emerging Applications for Secure Data Science: Internet of Transportation Systems 19.1 Introduction 19.2 Integration of Cyber Security and AI 19.3 Security and Privacy for the Internet of Transportation Systems 19.4 AI and Security for Cloud-based Internet of Transportation Systems 19.5 Summary and Directions References Conclusion to Part IV 20. Summary and Directions 20.1 About This Chapter 20.2 Summary of this Book 20.3 Directions for Secure Data Science 20.4 Where Do We Go From Here? Appendix. Data Management Systems - Developments and Trends A.1 Introduction A.2 Developments in Database Systems A.3 Status, Vision, and Issues A.4 Data Management Systems Framework A.5 Building Information Systems from the Framework A.6 Relationship Between the Texts A.7 Summary and Directions References Index