ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Satellite Communications Systems: Systems, Techniques and Technology

دانلود کتاب سیستم های ارتباطی ماهواره ای: سیستم ها ، تکنیک ها و فناوری

Satellite Communications Systems: Systems, Techniques and Technology

مشخصات کتاب

Satellite Communications Systems: Systems, Techniques and Technology

ویرایش: 6 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1119382076, 9781119382072 
ناشر: JOHN WILEY 
سال نشر: 2019 
تعداد صفحات: 794 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Satellite Communications Systems: Systems, Techniques and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های ارتباطی ماهواره ای: سیستم ها ، تکنیک ها و فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب سیستم های ارتباطی ماهواره ای: سیستم ها ، تکنیک ها و فناوری

سیستم‌های ارتباطات ماهواره‌ای، تکنیک‌ها و فناوری ویرایش سوم Gerard Maral Ecole Nationale Sup?rieure des T?l?communications, Toulouse, France and Michel Bousquet Ecole Nationale Sup?rieure de l'Aeronautique et l'Space, Translatede, France, Translatede. نلسون، دانشگاه لیدز، انگلستان از زمان انتشار اولین نسخه، سیستم های ارتباطات ماهواره ای به طور فزاینده ای پیچیده شده اند. این ویرایش سوم، به‌روزرسانی و توسعه‌یافته سیستم‌های ارتباطات ماهواره‌ای، کل حوزه مهندسی ارتباطات ماهواره‌ای از تکنیک‌های مکانیک مداری و انتشار امواج رادیویی تا طراحی پیوندهای ارتباطی و ایستگاه‌های زمینی را پوشش می‌دهد. نویسندگان سیستم‌های ارتباطی ماهواره‌ای متعددی را تجزیه و تحلیل می‌کنند، نحوه تعامل اجزا در این سیستم‌ها را نشان می‌دهند و رابطه بین سیستم و محیط آن را به تفصیل شرح می‌دهند. این کتاب خواننده را با تمام زمینه‌های مهندسی ارتباطات ماهواره‌ای آشنا می‌کند و بر مبادلاتی که می‌تواند در محدودیت‌های فناوری، مقررات و رقابت اعمال شود، تأکید می‌کند. ویژگی‌های متمایز:
- تعداد زیادی از داده‌های ریاضی، فنی و عملیاتی مربوط به تمام جنبه‌های طراحی و استفاده فضاپیماهای ارتباطی
- درباره آخرین پیشرفت‌ها در این زمینه در حال تحول، مانند برنامه‌های ATM، SDH، استاندارد اینترسات IDR و مکانیک مداری برای ارتباطات فضایی، زیرسیستم های آنتن ایستگاه زمینی و محموله ارتباطات
- تصاویر گسترده در سراسر
- بررسی فناوری های پیشرفته
هدف این کتاب دانشجویان، مهندسان و طراحان پیشرفته در زمینه ارتباطات رادیویی ماهواره ای و سیار و مهندسین ارتباطات. از صفحه وب ما دیدن کنید! http: //www.wiley.com/


توضیحاتی درمورد کتاب به خارجی

Satellite Communications Systems Systems, Techniques and Technology Third Edition Gerard Maral Ecole Nationale Sup?rieure des T?l?communications, Toulouse, France and Michel Bousquet Ecole Nationale Sup?rieure de l'Aeronautique et l'Espace, Toulouse, France Translated by J. C. C. Nelson, University of Leeds, UK Since publication of the first edition, satellite communications systems have become increasingly sophisticated. This revised, updated and extended third edition of Satellite Communications Systems covers the entire field of satellite communications engineering from the techniques of orbital mechanics and radio wave propagation to the design of communication links and earth stations. The authors analyse numerous satellite communications systems, demonstrate how the components interact within these systems, and detail the relationship between the system and its environment. This book introduces the reader to all areas of satellite communication engineering and emphasises the trade-offs that can be exercised within the constraints of technology, regulations and competition. Distinguishing Features:
- A wealth of mathematical, technical and operational data relevant to all aspects of communication spacecraft design and usage
- Discusses the most recent developments in this evolving field, such as ATM, SDH applications, the INTERSAT IDR standard and orbital mechanics for space communications, earth station antenna subsystems and communications payload
- Extensive illustrations throughout
- Survey of the state-of-the-art technology
This book is aimed at advanced students, engineers and designers in the field of satellite and mobile radio communications and communication engineers. Visit Our Web Page! http: //www.wiley.com/



فهرست مطالب

Cover
Title Page
Copyright
Contents
Acknowledgement
Acronyms
Notations
Chapter 1 Introduction
	1.1 Birth of Satellite Communications
	1.2 Development of Satellite Communications
	1.3 Configuration of a Satellite Communications System
		1.3.1 Communications links
		1.3.2 The space segment
		1.3.3 The ground segment
	1.4 Types of Orbit
	1.5 Radio Regulations
		1.5.1 The ITU organisation
		1.5.2 Space radiocommunications services
		1.5.3 Frequency allocation
	1.6 Technology Trends
	1.7 Services
	1.8 The Way Forward
	References
Chapter 2 Orbits and Related Issues
	2.1 Keplerian Orbits
		2.1.1 Kepler's laws
		2.1.2 Newton's law
		2.1.3 Relative movement of two point bodies
		2.1.4 Orbital parameters
		2.1.5 The earth's orbit
		2.1.6 Earth–satellite geometry
		2.1.7 Eclipses of the sun
		2.1.8 Sun–satellite conjunction
	2.2 Useful Orbits for Satellite Communication
		2.2.1 Elliptical orbits with non‐zero inclination
		2.2.2 Geosynchronous elliptic orbits with zero inclination
		2.2.3 Geosynchronous circular orbits with non‐zero inclination
		2.2.4 Sun‐synchronous circular orbits with zero inclination
		2.2.5 Geostationary satellite orbits
	2.3 Perturbations of Orbits
		2.3.1 The nature of perturbations
		2.3.2 The effect of perturbations; orbit perturbation
		2.3.3 Perturbations of the orbit of geostationary satellites
		2.3.4 Orbit corrections: station keeping of geostationary satellites
	2.4 Conclusion
	References
Chapter 3 Baseband Digital Signals, Packet Networks, and Quality of Service (QoS)
	3.1 Baseband Signals
		3.1.1 Digital telephone signal
		3.1.2 Sound signals
		3.1.3 Television signals
		3.1.4 Data and multimedia signals
	3.2 Performance Objectives
		3.2.1 Telephone
		3.2.2 Sound
		3.2.3 Television
		3.2.4 Data
	3.3 Availability Objectives
	3.4 Delay
		3.4.1 Delay in the terrestrial network
		3.4.2 Propagation delay over satellite links
		3.4.3 Baseband‐signal processing time
		3.4.4 Protocol‐induced delay
	3.5 IP Packet Transfer QOS and Network Performance
		3.5.1 Definition of QoS in the ETSI and ITU‐T standards
		3.5.2 IP packet transfer performance parameters
		3.5.3 IP service availability parameters
		3.5.4 IP network QoS class
	3.6 Conclusion
	References
Chapter 4 Digital Communications Techniques
	4.1 Baseband Formatting
		4.1.1 Encryption
		4.1.2 Scrambling
	4.2 Digital Modulation
		4.2.1 Two‐state modulation– BPSK and DE‐BPSK
		4.2.2 Four‐state modulation – QPSK
		4.2.3 Variants of QPSK
		4.2.4 Higher‐order PSK and APSK
		4.2.5 Spectrum of unfiltered modulated carriers
		4.2.6 Demodulation
		4.2.7 Modulation spectral efficiency
	4.3 Channel Coding
		4.3.1 Block encoding and convolutional encoding
		4.3.2 Channel decoding
		4.3.3 Concatenated encoding
		4.3.4 Interleaving
	4.4 Channel Coding and the Power–Bandwidth Trade‐Off
		4.4.1 Coding with variable bandwidth
		4.4.2 Coding with constant bandwidth
		4.4.3 Conclusion
	4.5 Coded Modulation
		4.5.1 Trellis‐coded modulation
		4.5.2 Block‐coded modulation
		4.5.3 Decoding coded modulation
		4.5.4 Multilevel trellis‐coded modulation
		4.5.5 TCM using a multidimensional signal set
		4.5.6 Performance of coded modulations
	4.6 End‐To‐End Error Control
	4.7 Digital Video Broadcasting via Satellite (DVB‐S)
		4.7.1 Transmission system
		4.7.2 Error performance requirements
	4.8 Second Generation DVB‐S (DVB‐S2)
		4.8.1 New technology in DVB‐S2
		4.8.2 Transmission system architecture
		4.8.3 Error performance
		4.8.4 FEC encoding
	4.9 New Features of DVB‐S2X
	4.10 Conclusion
		4.10.1 Digital transmission of telephony
		4.10.2 Digital broadcasting of television
	References
Chapter 5 Uplink, Downlink, and Overall Link Performance; Intersatellite Links
	5.1 Configuration of a Link
	5.2 Antenna Parameters
		5.2.1 Gain
		5.2.2 Radiation pattern and angular beamwidth
		5.2.3 Polarisation
	5.3 Radiated Power
		5.3.1 Effective isotropic radiated power (EIRP)
		5.3.2 Power flux density
	5.4 Received Signal Power
		5.4.1 Power captured by the receiving antenna and free space loss
		5.4.2 Additional losses
		5.4.3 Conclusion
	5.5 Noise Power Spectral Density at the Receiver Input
		5.5.1 The origins of noise
		5.5.2 Noise characterisation
		5.5.3 Noise temperature of an antenna
		5.5.4 System noise temperature
		5.5.5 Conclusion
	5.6 Individual Link Performance
		5.6.1 Carrier power to noise power spectral density ratio at receiver input
		5.6.2 Clear sky uplink performance
		5.6.3 Clear sky downlink performance
	5.7 Influence of the Atmosphere
		5.7.1 Impairments caused by rain
		5.7.2 Other impairments
		5.7.3 Link impairments – relative importance
		5.7.4 Link performance under rain conditions
		5.7.5 Conclusion
	5.8 Mitigation of Atmospheric Impairments
		5.8.1 Depolarisation mitigation
		5.8.2 Attenuation mitigation
		5.8.3 Site diversity
		5.8.4 Adaptivity
		5.8.5 Cost‐availability trade‐off
	5.9 Overall Link Performance with Transparent Satellite
		5.9.1 Characteristics of the satellite channel
		5.9.2 Expression for (C/N0)T
		5.9.3 Overall link performance for a transparent satellite without interference or intermodulation
	5.10 Overall Link Performance with Regenerative Satellite
		5.10.1 Linear satellite channel without interference
		5.10.2 Nonlinear satellite channel without interference
		5.10.3 Nonlinear satellite channel with interference
	5.11 Link Performance with Multibeam Antenna Coverage vs. Monobeam Coverage
		5.11.1 Advantages of multibeam coverage
		5.11.2 Disadvantages of multibeam coverage
		5.11.3 Conclusion
	5.12 Intersatellite Link Performance
		5.12.1 Frequency bands
		5.12.2 Radio‐frequency links
		5.12.3 Optical links
		5.12.4 Conclusion
	References
Chapter 6 Multiple Access
	6.1 Layered Data Transmission
	6.2 Traffic Parameters
		6.2.1 Traffic intensity
		6.2.2 Call blocking probability
		6.2.3 Burstiness
		6.2.4 Call delay probability
	6.3 TRAFFIC ROUTING
		6.3.1 One carrier per station‐to‐station link
		6.3.2 One carrier per transmitting station
		6.3.3 Comparison
	6.4 Access Techniques
		6.4.1 Access to a particular satellite channel (or transponder)
		6.4.2 Multiple access to the satellite repeater
		6.4.3 Performance evaluation – efficiency
	6.5 Frequency Division Multiple Access (FDMA)
		6.5.1 TDM/PSK/FDMA
		6.5.2 SCPC/FDMA
		6.5.3 Adjacent channel interference
		6.5.4 Intermodulation
		6.5.5 FDMA efficiency
		6.5.6 Conclusion
	6.6 Time Division Multiple Access (TDMA)
		6.6.1 Burst generation
		6.6.2 Frame structure
		6.6.3 Burst reception
		6.6.4 Synchronisation
		6.6.5 TDMA efficiency
		6.6.6 Conclusion
	6.7 Code Division Multiple Access (CDMA)
		6.7.1 Direct sequence (DS‐CDMA)
		6.7.2 Frequency hopping CDMA (FH‐CDMA)
		6.7.3 Code generation
		6.7.4 Synchronisation
		6.7.5 CDMA efficiency
		6.7.6 Conclusion
	6.8 Fixed and On‐Demand Assignment
		6.8.1 The principle
		6.8.2 Comparison between fixed and on‐demand assignment
		6.8.3 Centralised or distributed management of on‐demand assignment
		6.8.4 Conclusion
	6.9 Random Access
		6.9.1 Asynchronous protocols
		6.9.2 Protocols with synchronisation
		6.9.3 Protocols with assignment on demand
	6.10 CONCLUSION
	References
Chapter 7 Satellite Networks
	7.1 Network Reference Models and Protocols
		7.1.1 Layering principle
		7.1.2 Open Systems Interconnection (OSI) reference model
		7.1.3 IP reference model
	7.2 Reference Architecture for Satellite Networks
	7.3 Basic Characteristics of Satellite Networks
		7.3.1 Satellite network topology
		7.3.2 Types of link
		7.3.3 Connectivity
	7.4 Satellite On‐Board Connectivity
		7.4.1 On‐board connectivity with transponder hopping
		7.4.2 On‐board connectivity with transparent processing
		7.4.3 On‐board connectivity with regenerative processing
		7.4.4 On‐board connectivity with beam scanning (BFN – beam‐forming network)
	7.5 CONNECTIVITY THROUGH INTERSATELLITE LINKS (ISLs)
		7.5.1 Links between geostationary and low earth orbit satellites (GEO–LEO)
		7.5.2 Links between geostationary satellites (GEO–GEO)
		7.5.3 Links between low earth orbit satellites (LEO–LEO)
		7.5.4 Conclusion
	7.6 Satellite Broadcast Networks
		7.6.1 Single uplink (one programme) per satellite channel
		7.6.2 Several programmes per satellite channel
		7.6.3 Single uplink with time division multiplexing (TDM) of programmes
		7.6.4 Multiple uplinks with time division multiplexing (TDM) of programmes on downlink
	7.7 Broadband Satellite Networks
		7.7.1 Overview of DVB‐RCS/RCS2 and DVB‐S/S2/S2X networks
		7.7.2 Protocol stack architecture for broadband satellite networks
		7.7.3 Physical layer and MAC layer
		7.7.4 Satellite MAC layer
		7.7.5 Satellite Link Control layer
		7.7.6 Quality of service
		7.7.7 Network layer
		7.7.8 Regenerative satellite mesh network architecture
	7.8 Transmission Control Protocol
		7.8.1 TCP segment header format
		7.8.2 Connection setup and data transmission
		7.8.3 Congestion control and flow control
		7.8.4 Impact of satellite channel characteristics on TCP
		7.8.5 TCP performance enhancement (PEP) protocols
	7.9 IPV6 OVER SATELLITE NETWORKS
		7.9.1 IPv6 basics
		7.9.2 IPv6 transitions
		7.9.3 IPv6 tunnelling through satellite networks
		7.9.4 6to4 translation via satellite networks
	7.10 CONCLUSION
	References
Chapter 8 Earth Stations
	8.1 Station Organisation
	8.2 Radio‐Frequency Characteristics
		8.2.1 Effective isotropic radiated power (EIRP)
		8.2.2 Figure of merit of the station
		8.2.3 Standards defined by international organisations and satellite operators
	8.3 The Antenna Subsystem
		8.3.1 Radiation characteristics (main lobe)
		8.3.2 Side‐lobe radiation
		8.3.3 Antenna noise temperature
		8.3.4 Types of antenna
		8.3.5 Pointing angles of an earth station antenna
		8.3.6 Mountings to permit antenna pointing
		8.3.7 Tracking
	8.4 The Radio‐Frequency Subsystem
		8.4.1 Receiving equipment
		8.4.2 Transmission equipment
		8.4.3 Redundancy
	8.5 Communication Subsystems
		8.5.1 Frequency translation
		8.5.2 Amplification, filtering, and equalisation
		8.5.3 Modems
	8.6 The Network Interface Subsystem
		8.6.1 Multiplexing and demultiplexing
		8.6.2 Digital speech interpolation (DSI)
		8.6.3 Digital circuit multiplication equipment (DCME)
		8.6.4 Equipment specific to SCPC transmission
		8.6.5 Ethernet port for IP network connections
	8.7 Monitoring and Control; Auxiliary Equipment
		8.7.1 Monitoring, alarms, and control (MAC) equipment
		8.7.2 Electrical power
	8.8 Conclusion
	References
Chapter 9 The Communication Payload
	9.1 Mission and Characteristics of the Payload
		9.1.1 Functions of the payload
		9.1.2 Characterisation of the payload
		9.1.3 The relationship between the radio‐frequency characteristics
	9.2 Transparent Repeater
		9.2.1 Characterisation of nonlinearities
		9.2.2 Repeater organisation
		9.2.3 Equipment characteristics
	9.3 Regenerative Repeater
		9.3.1 Coherent demodulation
		9.3.2 Differential demodulation
		9.3.3 Multicarrier demodulation
	9.4 Multibeam Antenna Payload
		9.4.1 Fixed interconnection
		9.4.2 Reconfigurable (semi‐fixed) interconnection
		9.4.3 Transparent on‐board time domain switching
		9.4.4 On‐board frequency domain transparent switching
		9.4.5 Baseband regenerative switching
		9.4.6 Optical switching
	9.5 Introduction to Flexible Payloads
	9.6 Solid State Equipment Technology
		9.6.1 The environment
		9.6.2 Analogue microwave component technology
		9.6.3 Digital component technology
	9.7 Antenna Coverage
		9.7.1 Service zone contour
		9.7.2 Geometrical contour
		9.7.3 Global coverage
		9.7.4 Reduced or spot coverage
		9.7.5 Evaluation of antenna pointing error
		9.7.6 Conclusion
	9.8 Antenna Characteristics
		9.8.1 Antenna functions
		9.8.2 The RF coverage
		9.8.3 Circular beams
		9.8.4 Elliptical beams
		9.8.5 The influence of depointing
		9.8.6 Shaped beams
		9.8.7 Multiple beams
		9.8.8 Types of antenna
		9.8.9 Antenna technologies
	9.9 Conclusion
	References
Chapter 10 The Platform
	10.1 Subsystems
	10.2 Attitude Control
		10.2.1 Attitude control functions
		10.2.2 Attitude sensors
		10.2.3 Attitude determination
		10.2.4 Actuators
		10.2.5 The principle of gyroscopic stabilisation
		10.2.6 Spin stabilisation
		10.2.7 Three‐axis stabilisation
	10.3 The Propulsion Subsystem
		10.3.1 Characteristics of thrusters
		10.3.2 Chemical propulsion
		10.3.3 Electric propulsion
		10.3.4 Organisation of the propulsion subsystem
		10.3.5 Electric propulsion for station‐keeping and orbit transfer
	10.4 The Electric Power Supply
		10.4.1 Primary energy sources
		10.4.2 Secondary energy sources
		10.4.3 Conditioning and protection circuits
		10.4.4 Example calculations
	10.5 Telemetry, Tracking, and Command (TTC) and On‐Board Data Handling (OBDH)
		10.5.1 Frequencies used
		10.5.2 The telecommand links
		10.5.3 Telemetry links
		10.5.4 Telecommand (TC) and telemetry (TM) message format standards
		10.5.5 On‐board data handling (OBDH)
		10.5.6 Tracking
	10.6 Thermal Control and Structure
		10.6.1 Thermal control specifications
		10.6.2 Passive control
		10.6.3 Active control
		10.6.4 Structure
		10.6.5 Conclusion
	10.7 Developments and Trends
	References
Chapter 11 Satellite Installation and Launch Vehicles
	11.1 Installation in Orbit
		11.1.1 Basic principles
		11.1.2 Calculation of the required velocity increments
		11.1.3 Inclination correction and circularisation
		11.1.4 The apogee (or perigee) motor
		11.1.5 Injection into orbit with a conventional launcher
		11.1.6 Injection into orbit from a quasi‐circular low altitude orbit
		11.1.7 Operations during installation (station acquisition)
		11.1.8 Injection into orbits other than geostationary (non‐GEO orbits)
		11.1.9 The launch window
	11.2 Launch Vehicles
		11.2.1 Brazil
		11.2.2 China
		11.2.3 Commonwealth of Independent States (CIS)
		11.2.4 Europe
		11.2.5 India
		11.2.6 Israel
		11.2.7 Japan
		11.2.8 South Korea
		11.2.9 United States of America
		11.2.10 Reusable launch vehicles
		11.2.11 Cost of installation in orbit
	References
Chapter 12 The Space Environment
	12.1 Vacuum
		12.1.1 Characterisation
		12.1.2 Effects
	12.2 The Mechanical Environment
		12.2.1 The gravitational field
		12.2.2 The earth's magnetic field
		12.2.3 Solar radiation pressure
		12.2.4 Meteorites and material particles
		12.2.5 Torques of internal origin
		12.2.6 The effect of communication transmissions
		12.2.7 Conclusions
	12.3 Radiation
		12.3.1 Solar radiation
		12.3.2 Earth radiation
		12.3.3 Thermal effects
		12.3.4 Effects on materials
	12.4 Flux of High‐Energy Particles
		12.4.1 Cosmic particles
		12.4.2 Effects on materials
	12.5 The Environment During Installation
		12.5.1 The environment during launching
		12.5.2 Environment in the transfer orbit
	References
Chapter 13 Reliability and Availability of Satellite Communications Systems
	13.1 Introduction to Reliability
		13.1.1 Failure rate
		13.1.2 The probability of survival, or reliability
		13.1.3 Failure probability or unreliability
		13.1.4 Mean time to failure (MTTF)
		13.1.5 Mean satellite lifetime
		13.1.6 Reliability during the wear‐out period
	13.2 Satellite System Availability
		13.2.1 No backup satellite in orbit
		13.2.2 Backup satellite in orbit
		13.2.3 Conclusion
	13.3 Subsystem Reliability
		13.3.1 Elements in series
		13.3.2 Elements in parallel (static redundancy)
		13.3.3 Dynamic redundancy (with switching)
		13.3.4 Equipment having several failure modes
	13.4 Component Reliability
		13.4.1 Component reliability
		13.4.2 Component selection
		13.4.3 Manufacture
		13.4.4 Quality assurance
	References
Index
EULA




نظرات کاربران