دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: حمل و نقل: هواپیمایی ویرایش: نویسندگان: Wayne Johnson سری: Cambridge Aerospace Series ISBN (شابک) : 1107028078, 9781107028074 ناشر: Cambridge University Press سال نشر: 2013 تعداد صفحات: 950 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب روتورکرافت هوامکانیک: حمل و نقل، مهندسی هوانوردی، آیرودینامیک در هوانوردی
در صورت تبدیل فایل کتاب Rotorcraft Aeromechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روتورکرافت هوامکانیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روتورکرافت کلاسی از هواپیماها است که از بالهای چرخان با قطر بزرگ برای برخاستن و فرود عمودی کارآمد استفاده میکنند. این کلاس شامل هلیکوپترهایی با پیکربندی های متعدد (روتور تک روتور اصلی و روتور دم، روتورهای پشت سر هم، روتورهای کواکسیال)، هواپیمای شیب دار، هلیکوپترهای ترکیبی، و بسیاری دیگر از مفاهیم پیکربندی نوآورانه است. مکانیک هوا شامل بسیاری از چیزهایی است که مهندس روتورکرافت نیاز دارد: عملکرد، بار، ارتعاش، پایداری، دینامیک پرواز و نویز. این موضوعات بسیاری از ویژگیهای کلیدی عملکرد و مشکلاتی که اغلب در طراحیهای روتورکرافت با آن مواجه میشوند را پوشش میدهند. این کتاب جامع، آنچه را که مهندسان باید در مورد مدلسازی مکانیک هواپیمای روتورکرافت بدانند، بهطور عمیق ارائه میکند. تمرکز بر تجزیه و تحلیل است و نتایج محاسبه شده برای نشان دادن ویژگی های تحلیل و رفتار روتور ارائه شده است. سومین کتاب مقدمه ای بر آیرودینامیک روتورکرافت، حرکت تیغه ها و عملکرد است. بقیه کتاب موضوعات پیشرفته ایرودینامیک و دینامیک بال های چرخشی را پوشش می دهد.
A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics includes much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics cover many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modeling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behavior. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.
Contents Preface 1 Introduction 1.1 The Helicopter 1.1.1 The Helicopter Rotor 1.1.2 Helicopter Configuration 1.1.3 Helicopter Operation 1.2 Design Trends 1.3 History 1.4 Books Bibliography 2 Notation 2.1 Dimensions 2.2 Nomenclature 2.2.1 Physical Description of the Blade 2.2.2 Blade Aerodynamics 2.2.3 Blade Motion 2.2.4 Rotor Angle-of-Attack and Velocity 2.2.5 Rotor Forces and Power 2.2.6 Rotor Disk Planes 2.3 Other Notation Conventions 2.4 Geometry and Rotations 2.5 Symbols, Subscripts, and Superscripts Subscripts and Superscripts Abbreviations 2.6 References Bibliography 3 Hover 3.1 Momentum Theory 3.1.1 Actuator Disk 3.1.2 Momentum Theory in Hover 3.1.3 Momentum Theory in Climb 3.2 Hover Power 3.3 Figure of Merit 3.4 Extended Momentum Theory 3.4.1 Rotor in Hover or Climb 3.4.2 Swirl in the Wake 3.5 Blade Element Theory 3.5.1 History of Blade Element Theory 3.5.2 Blade Element Theory for Vertical Flight 3.5.3 Combined Blade Element and Momentum Theory 3.6 Hover Performance 3.6.1 Scaling with Solidity 3.6.2 Tip Losses 3.6.3 Induced Power due to Nonuniform Inflow 3.6.4 Root Cutout 3.6.5 Blade Mean Lift Coefficient 3.6.6 Equivalent Solidity 3.6.7 The Ideal Rotor 3.6.8 The Optimum Hovering Rotor 3.6.9 Elementary Hover Performance Results 3.7 Vortex Theory 3.7.1 Vortex Representation of the Rotor and Wake 3.7.2 Actuator Disk Vortex Theory 3.7.3 Finite Number of Blades 3.8 Nonuniform Inflow 3.8.1 Hover Wake Geometry 3.8.2 Hover Performance Results from Free Wake Analysis 3.9 Influence of Blade Geometry 3.9.1 Twist and Taper 3.9.2 Blade Tip Shape 3.10 References Bibliography 4 Vertical Flight 4.1 Induced Power in Vertical Flight 4.1.1 Momentum Theory for Vertical Flight 4.1.2 Flow States of the Rotor in Axial Flight 4.1.3 Induced Velocity Curve 4.2 Vortex Ring State 4.3 Autorotation in Vertical Descent 4.4 Climb in Vertical Flight 4.5 Optimum Windmill 4.6 Twin Rotor Interference in Hover 4.6.1 Coaxial Rotors 4.6.2 Tandem Rotors 4.7 Vertical Drag and Download 4.8 Ground Effect 4.9 References Bibliography 5 Forward Flight Wake 5.1 Momentum Theory in Forward Flight 5.1.1 Rotor Induced Power 5.1.2 Climb, Descent, and Autorotation in Forward Flight 5.1.3 Rotor Loading Distribution 5.2 Vortex Theory in Forward Flight 5.2.1 Actuator Disk Results 5.2.2 Induced Velocity Variation in Forward Flight 5.3 Twin Rotor Interference in Forward Flight 5.3.1 Tandem and Coaxial Configurations 5.3.2 Side-by-Side Configuration 5.4 Ducted Fan 5.5 Influence of Ground in Forward Flight 5.5.1 Ground Effect 5.5.2 Ground Vortex 5.6 Interference 5.6.1 Rotor-Airframe Interference 5.6.2 Tail Design 5.6.3 Rotor Interference on Horizontal Tail 5.6.4 Pylon and Hub Interference on Tail 5.6.5 Tail Rotor 5.7 References Bibliography 6 Forward Flight 6.1 The Helicopter Rotor in Forward Flight 6.1.1 Velocity 6.1.2 Blade Motion 6.1.3 Reference Planes 6.2 Aerodynamics of Forward Flight 6.3 Rotor Aerodynamic Forces 6.4 Power in Forward Flight 6.5 Rotor Flapping Motion 6.6 Linear Inflow Variation 6.7 Higher Harmonic Flapping Motion 6.8 Reverse Flow 6.9 Blade Weight Moment 6.10 Compressibility 6.11 Reynolds Number 6.12 Tip Loss and Root Cutout 6.13 Assumptions and Examples 6.14 Flap Motion with a Hinge Spring 6.15 Flap-Hinge Offset 6.16 Hingeless Rotor 6.17 Gimballed or Teetering Rotor 6.18 Pitch-Flap Coupling 6.19 Tail Rotor 6.20 Lag Motion 6.21 Helicopter Force and Moment Equilibrium 6.22 Yawed Flow and Radial Drag 6.23 Profile Power 6.24 History 6.24.1 The Beginning of Aeromechanics 6.24.2 After Glauert 6.25 References Bibliography 7 Performance 7.1 Rotor Performance Estimation 7.1.1 Hover and Vertical Flight Performance 7.1.2 Forward Flight Performance 7.1.3 D/L Formulation 7.1.4 Rotor Lift and Drag 7.1.5 P/T Formulation 7.1.6 Rotorcraft Performance 7.1.7 Performance Charts 7.2 Rotorcraft Performance Characteristics 7.2.1 Hover Performance 7.2.2 Power Required in Level Flight 7.2.3 Climb and Descent 7.2.4 Maximum Speed 7.2.5 Ceiling 7.2.6 Range and Endurance 7.2.7 Referred Performance 7.3 Performance Metrics 7.4 References Bibliography 8 Design 8.1 Rotor Configuration 8.2 Rotorcraft Configuration 8.3 Anti-Torque and Tail Rotor 8.4 Helicopter Speed Limitations 8.5 Autorotation, Landing, and Takeoff 8.6 Helicopter Drag 8.7 Rotor Blade Airfoils 8.8 Rotor Blade Profile Drag 8.9 References Bibliography 9 Wings and Wakes 9.1 Rotor Vortex Wake 9.2 Lifting-Line Theory 9.3 Perturbation Solution for Lifting-Line Theory 9.4 Nonuniform Inflow 9.5 Wake Geometry 9.6 Examples 9.7 Vortex Core 9.8 Blade-Vortex Interaction 9.9 Vortex Elements 9.9.1 Vortex Line Segment 9.9.2 Vortex Sheet Element 9.9.3 Circular-Arc Vortex Element 9.10 History 9.11 References Bibliography 10 Unsteady Aerodynamics 10.1 Two-Dimensional Unsteady Airfoil Theory 10.2 Lifting-Line Theory and Near Shed Wake 10.3 Reverse Flow 10.4 Trailing-Edge Flap 10.5 Unsteady Airfoil Theory with a Time-Varying Free Stream 10.6 Unsteady Airfoil Theory for the Rotary Wing 10.7 Two-Dimensional Model for Hovering Rotor 10.8 Blade-Vortex Interaction 10.9 References Bibliography 11 Actuator Disk 11.1 Vortex Theory 11.2 Potential Theory 11.3 Dynamic Inflow 11.4 History 11.5 References Bibliography 12 Stall 12.1 Dynamic Stall 12.2 Rotary-Wing Stall Characteristics 12.3 Elementary Stall Criteria 12.4 Empirical Dynamic Stall Models 12.5 References Bibliography 13 Computational Aerodynamics 13.1 Potential Theory 13.2 Rotating Coordinate System 13.3 Lifting-Surface Theory 13.3.1 Moving Singularity 13.3.2 Fixed Wing 13.3.3 Rotary Wing 13.4 Boundary Element Methods 13.4.1 Surface Singularity Representations 13.4.2 Integral Equation 13.4.3 Compressible Flow 13.5 Transonic Theory 13.5.1 Small-Disturbance Potential 13.5.2 History 13.6 Navier-Stokes Equations 13.6.1 Hover Boundary Conditions 13.6.2 CFD/CSD Coupling 13.7 Boundary Layer Equations 13.8 Static Stall Delay 13.9 References Bibliography 14 Noise 14.1 Helicopter Rotor Noise 14.2 Rotor Sound Spectrum 14.3 Broadband Noise 14.4 Rotational Noise 14.4.1 Rotor Pressure Distribution 14.4.2 Hovering Rotor with Steady Loading 14.4.3 Vertical Flight and Steady Loading 14.4.4 Stationary Rotor with Unsteady Loading 14.4.5 Forward Flight and Steady Loading 14.4.6 Forward Flight and Unsteady Loading 14.4.7 Doppler Shift 14.4.8 Thickness Noise 14.5 Sound Generated Aerodynamically 14.5.1 Lighthill's Acoustic Analogy 14.5.2 Ffowcs Williams-Hawkings Equation 14.5.3 Kirchhoff Equation 14.5.4 Integral Formulations 14.5.5 Far Field Thickness and Loading Noise 14.5.6 Broadband Noise 14.6 Impulsive Noise 14.7 Noise Certification 14.8 References Bibliography 15 Mathematics of Rotating Systems 15.1 Fourier Series 15.2 Sum of Harmonics 15.3 Harmonic Analysis 15.4 Multiblade Coordinates 15.4.1 Transformation of the Degrees of Freedom 15.4.2 Matrix Form 15.4.3 Conversion of the Equations of Motion 15.4.4 Reactionless Mode and Two-Bladed Rotors 15.4.5 History 15.5 Eigenvalues and Eigenvectors of the Rotor Motion 15.6 Analysis of Linear, Periodic Systems 15.6.1 Linear, Constant Coefficient Equations 15.6.2 Linear, Periodic Coefficient Equations 15.7 Solution of the Equations of Motion 15.7.1 Early Methods 15.7.2 Harmonic Analysis 15.7.3 Time Finite Element 15.7.4 Periodic Shooting 15.7.5 Algebraic Equations 15.7.6 Successive Substitution 15.7.7 Newton-Raphson 15.8 References Bibliography 16 Blade Motion 16.1 Sturm-Liouville Theory 16.2 Derivation of Equations of Motion 16.2.1 Integral Newtonian Method 16.2.2 Differential Newtonian Method 16.2.3 Lagrangian Method 16.2.4 Normal Mode Method 16.2.5 Galerkin Method 16.2.6 Rayleigh-Ritz Method 16.2.7 Lumped Parameter and Finite Element Methods 16.3 Out-of-Plane Motion 16.3.1 Rigid Flapping 16.3.2 Out-of-Plane Bending 16.3.3 Non-Rotating Frame 16.3.4 Bending Moments 16.4 In-Plane Motion 16.4.1 Rigid Flap and Lag 16.4.2 Structural Coupling 16.4.3 In-Plane Bending 16.4.4 In-Plane and Out-of-Plane Bending 16.5 Torsional Motion 16.5.1 Rigid Pitch and Flap 16.5.2 Structural Pitch-Flap and Pitch-Lag Coupling 16.5.3 Torsion and Out-of-Plane Bending 16.5.4 Non-Rotating Frame 16.6 Hub Reactions 16.6.1 Rotating Loads 16.6.2 Non-Rotating Loads 16.7 Shaft Motion 16.8 Aerodynamic Loads 16.8.1 Section Aerodynamics 16.8.2 Flap Motion 16.8.3 Flap and Lag Motion 16.8.4 Non-Rotating Frame 16.8.5 Hub Reactions in Rotating Frame 16.8.6 Hub Reactions in Non-Rotating Frame 16.8.7 Shaft Motion 16.8.8 Summary 16.8.9 Large Angles and High Inflow 16.8.10 Pitch and Flap Motion 16.9 References Bibliography 17 Beam Theory 17.1 Beams and Rotor Blades 17.2 Engineering Beam Theory for a Twisted Rotor Blade 17.3 Nonlinear Beam Theory 17.3.1 Beam Cross-Section Motion 17.3.2 Extension and Torsion Produced by Bending 17.3.3 Elastic Variables and Shape Functions 17.3.4 Hamilton's Principle 17.3.5 Strain Energy 17.3.6 Extension-Torsion Coupling 17.3.7 Kinetic Energy 17.3.8 Equations of Motion 17.3.9 Structural Loads 17.4 Equations of Motion for Elastic Rotor Blade 17.5 History 17.6 References Bibliography 18 Dynamics 18.1 Blade Modal Frequencies 18.2 Rotor Structural Loads 18.3 Vibration 18.4 Vibration Requirements and Vibration Reduction 18.5 Higher Harmonic Control 18.5.1 Control Algorithm 18.5.2 Helicopter Model 18.5.3 Identification 18.5.4 Control 18.5.5 Time-Domain Controllers 18.5.6 Effectiveness of HHC and IBC 18.6 Lag Damper 18.7 References Bibliography 19 Flap Motion 19.1 Rotating Frame 19.1.1 Hover Roots 19.1.2 Forward Flight Roots 19.1.3 Hover Transfer Function 19.2 Non-Rotating Frame 19.2.1 Hover Roots and Modes 19.2.2 Hover Transfer Functions 19.3 Low-Frequency Response 19.4 Hub Reactions 19.5 Wake Influence 19.6 Pitch-Flap Coupling and Feedback 19.7 Complex Variable Representation of Motion 19.8 Two-Bladed Rotor 19.9 References Bibliography 20 Stability 20.1 Pitch-Flap Flutter 20.1.1 Pitch-Flap Equations 20.1.2 Divergence Instability 20.1.3 Flutter Instability 20.1.4 Shed Wake Influence 20.1.5 Forward Flight 20.1.6 Coupled Blades 20.2 Flap-Lag Dynamics 20.2.1 Flap-Lag Equations 20.2.2 Articulated Rotors 20.2.3 Stability Boundary 20.2.4 Hingeless Rotors 20.2.5 Pitch-Flap and Pitch-Lag Coupling 20.2.6 Blade Stall 20.2.7 Elastic Blade and Flap-Lag-Torsion Stability 20.3 Ground Resonance 20.3.1 Ground Resonance Equations 20.3.2 No-Damping Case 20.3.3 Damping Required for Ground Resonance Stability 20.3.4 Complex Variable Representation of Motion 20.3.5 Two-Bladed Rotor 20.3.6 Air Resonance 20.3.7 Dynamic Inflow 20.3.8 History 20.4 Whirl Flutter 20.4.1 Whirl Flutter Equations 20.4.2 Propeller Whirl Flutter 20.4.3 Tiltrotor Whirl Flutter 20.5 References Bibliography 21 Flight Dynamics 21.1 Control 21.2 Aircraft Motion 21.3 Motion and Loads 21.4 Hover Flight Dynamics 21.4.1 Rotor Forces and Moments 21.4.2 Hover Stability Derivatives 21.4.3 Vertical Dynamics 21.4.4 Directional Dynamics 21.4.5 Longitudinal Dynamics 21.4.6 Response to Control and Loop Closures 21.4.7 Lateral Dynamics 21.4.8 Coupled Longitudinal and Lateral Dynamics 21.5 Forward Flight 21.5.1 Forward Flight Stability Derivatives 21.5.2 Longitudinal Dynamics 21.5.3 Short Period Approximation 21.5.4 Lateral-Directional Dynamics 21.6 Static Stability 21.7 Twin Main Rotor Configurations 21.7.1 Tandem Helicopter 21.7.2 Side-by-Side Helicopter or Tiltrotor 21.8 Hingeless Rotor Helicopters 21.9 Control Gyros and Stability Augmentation 21.10 Flying Qualities Specifications 21.10.1 MIL-H-8501A 21.10.2 Handling Qualities Rating 21.10.3 Bandwidth Requirements 21.10.4 ADS-33 21.11 References Bibliography 22 Comprehensive Analysis 22.1 References Bibliography Index