ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X)

دانلود کتاب Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X)

Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X)

مشخصات کتاب

Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X)

ویرایش:  
 
سری:  
ISBN (شابک) : 0387304460 
ناشر: Springer 
سال نشر: 2009 
تعداد صفحات: 321 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Rossi C., Russo F., Russo F. Ancient Engineers' Inventions - Precursors of the Present (904812252X)

این کتاب راهنمای مدرن بی‌نظیری است که ماهیت بین‌رشته‌ای غنی آکوستیک را منعکس می‌کند که توسط یک استاد شناخته شده در این زمینه ویرایش شده است. این کتاب راهنما مهم ترین حوزه های موضوع را با تأکید بر تحقیقات فعلی مرور می کند. نویسندگان فصل های مختلف همگی در زمینه های خود متخصص هستند. هر فصل با شکل ها و جداول به صورت غنی نشان داده شده است. آخرین تحقیقات و برنامه‌های کاربردی در سراسر جهان گنجانده شده‌اند، از جمله تشخیص رایانه و سنتز گفتار، آکوستیک فیزیولوژیکی، تصویربرداری تشخیصی و کاربردهای درمانی و اقیانوس‌شناسی صوتی. یک CD-ROM همراه حاوی فایل های صوتی و تصویری است.


توضیحاتی درمورد کتاب به خارجی

This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.



فهرست مطالب

Springer Handbook of Acoustics
......Page 4
Foreword......Page 6
Preface......Page 7
List of Authors......Page 8
Contents......Page 11
List of Abbreviations......Page 19
1.2 Sounds We Hear......Page 22
1.4 Sounds We Would Rather Not Hear: Environmental Noise Control......Page 23
1.6 Sound of the Human Voice: Speech and Singing......Page 24
1.8 Architectural Acoustics......Page 25
1.10 Medical Acoustics......Page 26
1.11 Sounds of the Sea......Page 27
2.1 Acoustics in Ancient Times......Page 28
2.3 Speed of Sound in Air......Page 29
2.5 Determining Frequency......Page 30
2.6.2 Helmholtz......Page 31
2.6.4 George Stokes......Page 32
2.6.6 Thomas Edison......Page 33
2.7.1 Architectural Acoustics......Page 34
2.7.2 Physical Acoustics......Page 35
2.7.3 Engineering Acoustics......Page 37
2.7.4 Structural Acoustics 2.7.5 Underwater Acoustics......Page 38
and Psychological Acoustics......Page 39
2.7.8 Musical Acoustics......Page 40
2.8 Conclusion......Page 42
3. Basic Linear Linear Acoustics......Page 44
3.1 Introduction......Page 46
and Energy Equations......Page 47
and Thermal Conductivity......Page 49
3.2.5 Navier–Stokes–Fourier Equations......Page 50
3.2.8 Suspensions and Bubbly Liquids......Page 51
3.2.9 Elastic Solids......Page 52
3.3.1 The Linearization Process......Page 54
3.3.2 Linearized Equations for an Ideal Fluid 3.3.4 Wave Equations for Isotropic Elastic Solids......Page 55
for a Viscous Fluid......Page 56
3.3.7 Boundary Conditions at Interfaces......Page 58
3.4.1 Hamilton’s Principle......Page 59
3.4.2 Biot’s Formulation for Porous Media......Page 61
3.4.3 Disturbance Modes in a Biot Medium......Page 62
3.5.1 Spectral Density......Page 64
3.5.3 Complex Number Representation......Page 65
3.6.1 Plane Waves in Fluids......Page 66
3.6.2 Plane Waves in Solids......Page 67
3.7.1 Classical Absorption......Page 68
3.7.2 Relaxation Processes......Page 69
3.7.4 Kramers–Krönig Relations......Page 71
3.7.5 Attenuation of Sound in Air......Page 74
3.7.6 Attenuation of Sound in Sea Water......Page 76
3.8.1 Energy Conservation Interpretation......Page 77
3.8.4 Rate of Energy Dissipation......Page 78
3.9.3 Characteristic Impedance......Page 79
3.10.1 Reflectio at a Plane Surface......Page 80
3.10.2 Reflectio at an Interface......Page 81
and Slabs......Page 82
3.10.5 Transmission through Limp Plates......Page 83
Waves......Page 84
3.11.2 Radially Oscillating Sphere......Page 85
3.11.3 Transversely Oscillating Sphere......Page 86
3.11.4 Axially Symmetric Solutions......Page 87
3.11.5 Scattering by a Rigid Sphere......Page 92
3.12.1 Cylindrically Symmetric Outgoing Waves......Page 94
3.12.2 Bessel and Hankel Functions......Page 96
3.12.3 Radially Oscillating Cylinder......Page 100
3.13.3 Multiple and Distributed Sources......Page 101
3.13.4 Piston of Finite Size in a Rigid Baffl......Page 102
3.13.5 Thermoacoustic Sources......Page 103
3.13.7 Multipole Series......Page 104
3.13.9 Spherical Harmonics......Page 105
3.14.1 The Helmholtz–Kirchhoff Integral......Page 106
3.14.2 Integral Equations for Surface Fields......Page 107
3.15.1 Guided Modes in a Duct......Page 108
3.15.3 Low-Frequency Model for Ducts......Page 109
3.15.4 Sound Attenuation in Ducts......Page 110
3.15.5 Muffler and Acoustic Filters......Page 111
3.15.8 Helmholtz Resonators......Page 112
3.16 Ray Acoustics......Page 113
3.16.2 Reflecte and Diffracted Rays......Page 114
3.16.3 Inhomogeneous Moving Media......Page 115
of Amplitudes......Page 116
3.17.2 Rays and Spatial Regions......Page 117
3.17.3 Residual Diffracted Wave......Page 118
3.17.5 Impulse Solution......Page 121
3.17.7 Uniform Asymptotic Solution 3.17.6 Constant-Frequency Diffraction......Page 122
3.17.8 Special Functions for Diffraction......Page 123
3.17.9 Plane Wave Diffraction......Page 124
3.17.10 Small-Angle Diffraction......Page 125
3.18 Parabolic Equation Methods......Page 126
4.1 A Short History of Outdoor Acoustics......Page 131
4.2 Applications of Outdoor Acoustics......Page 132
4.3 Spreading Losses......Page 133
4.5 Diffraction and Barriers......Page 134
4.5.1 Single-Edge Diffraction......Page 135
4.5.2 Effects of the Ground on Barrier Performance......Page 136
4.5.3 Diffraction by Finite-Length Barriers and Buildings......Page 137
4.6.1 Boundary Conditions at the Ground......Page 138
4.6.2 Attenuation of Spherical Acoustic Waves over the Ground......Page 139
4.6.3 Surface Waves......Page 140
4.6.5 Effects of Small-Scale Roughness......Page 141
4.6.6 Examples of Ground Attenuation under Weakly Refracting Conditions......Page 142
4.6.7 Effects of Ground Elasticity......Page 143
4.7 Attenuation Through Trees and Foliage......Page 147
4.8.1 Inversions and Shadow Zones......Page 149
4.8.2 Meteorological Classes for Outdoor Sound Propagation......Page 151
4.8.3 Typical Speed of Sound Profile......Page 154
4.8.4 Atmospheric Turbulence Effects......Page 156
4.9 Concluding Remarks......Page 160
4.9.5 Predicting Outdoor Noise......Page 161
5. Underwater Acoustics......Page 166
5.1.1 Ocean Environment......Page 168
5.1.2 Basic Acoustic Propagation Paths......Page 169
5.1.3 Geometric Spreading Loss......Page 171
5.2.1 Transducers......Page 172
5.2.2 Volume Attenuation......Page 174
5.2.3 Bottom Loss......Page 175
5.2.4 Scattering and Reverberation......Page 176
5.2.5 Ambient Noise......Page 178
5.2.6 Bubbles and Bubbly Media......Page 179
Operating Characteristics Curves......Page 182
5.3.2 Passive SONAR Equation......Page 183
5.4 Sound Propagation Models......Page 184
5.4.2 Ray Theory......Page 185
5.4.3 Wavenumber Representation or Spectral Solution......Page 186
5.4.5 Parabolic Equation (PE) Model......Page 189
5.4.7 Fourier Synthesis of Frequency-Domain Solutions......Page 192
5.5 Quantitative Description of Propagation......Page 194
5.6.1 Linear Plane-Wave Beam-Forming and Spatio-Temporal Sampling......Page 196
5.6.2 Some Beam-Former Properties......Page 198
5.6.4 Matched Field Processing, Phase Conjugation and Time Reversal......Page 199
5.7.1 Active SONAR Signal Processing......Page 202
5.7.2 Underwater Acoustic Imaging......Page 204
5.7.3 Acoustic Telemetry......Page 208
5.7.4 Travel-Time Tomography......Page 209
5.8.1 Fisheries Acoustics......Page 212
5.8.2 Marine Mammal Acoustics......Page 215
5.A Appendix: Units......Page 218
6. Physical Acoustics......Page 222
6.1.1 Basic Wave Concepts......Page 224
6.1.2 Properties of Waves......Page 225
6.1.3 Wave Propagation in Fluids......Page 230
6.1.4 Wave Propagation in Solids......Page 232
6.2.1 Crystalline Elastic Constants......Page 234
6.2.2 Resonant Ultrasound Spectroscopy (RUS)......Page 235
6.2.3 Measurement Of Attenuation (Classical Approach)......Page 236
6.2.5 Sonoluminescence......Page 237
(Refrigerators and Prime Movers)......Page 238
6.2.7 Acoustic Detection of Land Mines......Page 239
6.2.8 Medical Ultrasonography......Page 240
6.3.1 Examples of Apparatus......Page 241
6.3.3 Schlieren Imaging......Page 243
6.4 Surface Acoustic Waves......Page 246
6.5.1 Nonlinearity of Fluids......Page 249
6.5.2 Nonlinearity of Solids......Page 250
6.5.3 Comparison of Fluids and Solids......Page 251
7.1 History......Page 254
7.2.1 Pressure and Velocity......Page 255
7.2.2 Power......Page 258
7.3.1 Standing-Wave Engines......Page 259
7.3.2 Traveling-Wave Engines......Page 261
7.3.3 Combustion......Page 263
7.4 Dissipation......Page 264
7.5.1 Standing-Wave Refrigeration......Page 265
7.5.2 Traveling-Wave Refrigeration......Page 266
7.6 Mixture Separation......Page 268
8. Nonlinear Acoustics in Fluids ......Page 271
8.1 Origin of Nonlinearity......Page 272
8.2 Equation of State......Page 273
8.3 The Nonlinearity Parameter B/A......Page 274
8.4 The Coefficien of Nonlinearity ß......Page 276
8.5 Simple Nonlinear Waves......Page 277
8.6 Lossless Finite-Amplitude Acoustic Waves......Page 278
8.7 Thermoviscous Finite-Amplitude Acoustic Waves......Page 282
8.8 Shock Waves......Page 285
8.9 Interaction of Nonlinear Waves......Page 287
8.10 Bubbly Liquids......Page 289
8.10.1 Incompressible Liquids......Page 290
8.10.2 Compressible Liquids......Page 292
8.10.3 Low-Frequency Waves: The Korteweg–de Vries Equation......Page 293
8.10.4 Envelopes of Wave Trains: The Nonlinear Schrödinger Equation......Page 296
8.10.5 Interaction of Nonlinear Waves. Sound–Ultrasound Interaction......Page 298
8.11 Sonoluminescence......Page 300
8.12.1 Methods of Chaos Physics......Page 303
8.12.2 Chaotic Sound Waves......Page 306
9. Acoustics in Halls for Speech and Music ......Page 312
9.1 Room Acoustic Concepts......Page 313
9.2.2 Subjective Room Acoustic Experiment Techniques......Page 314
9.2.3 Subjective Effects of Audible Reflection......Page 316
9.3 Subjective and Objective Room Acoustic Parameters......Page 317
9.3.1 Reverberation Time......Page 318
9.3.3 Sound Strength......Page 319
9.3.4 Measures of Spaciousness......Page 320
9.3.5 Parameters Relating to Timbre or Tonal Color......Page 321
9.3.7 Speech Intelligibility......Page 322
9.3.8 Isn’t One Objective Parameter Enough?......Page 323
9.3.9 Recommended Values of Objective Parameters......Page 324
9.4.1 The Schroeder Method for the Measurement of Decay Curves......Page 325
9.4.5 Signal Storage and Processing......Page 326
9.5.1 Prediction of Reverberation Time by Means of Classical Reverberation Theory......Page 327
9.5.2 Prediction of Reverberation in Coupled Rooms......Page 329
9.5.3 Absorption Data for Seats and Audiences......Page 330
9.5.4 Prediction by Computer Simulations......Page 331
9.5.5 Scale Model Predictions......Page 332
9.5.6 Prediction from Empirical Data......Page 333
9.6.1 General Room Shape and Seating Layout......Page 334
9.6.2 Seating Arrangement in Section......Page 337
9.6.3 Balcony Design......Page 338
9.6.4 Volume and Ceiling Height......Page 339
9.6.6 Room Shape Details Causing Risks of Focusing and Flutter......Page 340
9.6.7 Cultivating Early Reflection......Page 341
9.6.8 Suspended Reflector......Page 342
9.6.9 Sound-Diffusing Surfaces......Page 344
9.7.1 Speech Auditoria, Drama Theaters and Lecture Halls......Page 345
9.7.2 Opera Halls......Page 346
9.7.3 Concert Halls for Classical Music......Page 349
9.7.4 Multipurpose Halls......Page 353
9.7.5 Halls for Rhythmic Music......Page 355
9.8.1 PA Systems......Page 357
9.8.2 Reverberation-Enhancement Systems......Page 359
10. Concert Hall Acoustics Based on Subjective Preference Theory......Page 362
10.1.1 Sound Fields with a Single Reflectio......Page 364
10.1.2 Optimal Conditions Maximizing Subjective Preference......Page 367
10.1.3 Theory of Subjective Preference for the Sound Field......Page 368
10.1.4 Auditory Temporal Window for ACF and IACF Processing......Page 371
10.2 Design Studies......Page 372
10.2.1 Study of a Space-Form Designby Genetic Algorithms (GA)......Page 373
10.2.2 Actual Design Studies......Page 376
10.3 Individual Preferences of a Listener and a Performer......Page 381
10.3.1 Individual Subjective Preferenceof Each Listener......Page 382
10.3.2 Individual Subjective Preference of Each Cellist......Page 385
10.4 Acoustical Measurements of the Sound Fields in Rooms......Page 388
10.4.1 Acoustic Test Techniques......Page 389
10.4.2 Subjective Preference Testin an Existing Hall......Page 393
10.4.3 Conclusions......Page 394
11.1 Room Acoustics......Page 398
11.1.1 Room Modes......Page 399
11.1.2 Sound Fields in Rooms......Page 400
11.1.3 Sound Absorption......Page 401
11.1.5 Effects of Room Shapes......Page 405
11.1.6 Sound Insulation......Page 406
11.2 General Noise Reduction Methods......Page 411
11.2.2 Enclosures......Page 412
11.2.7 Active Noise Control......Page 413
11.3 Noise Ratings for Steady Background Sound Levels......Page 414
11.4.1 HVAC Systems......Page 416
11.4.4 Exterior Sources......Page 417
11.5.1 Walls, Floor/Ceilings, Window and Door Assemblies......Page 418
11.5.2 HVAC Systems......Page 423
11.5.3 Plumbing Systems......Page 426
11.5.4 Electrical Systems......Page 428
11.6.2 Metrics for Speech Privacy......Page 430
11.6.4 Open-Plan Offices......Page 434
11.7 Relevant Standards......Page 435
12.1.1 External Ear......Page 437
12.1.2 Middle Ear......Page 440
12.2.1 Anatomy of the Cochlea......Page 442
12.2.2 Basilar-Membrane Vibration and Frequency Analysis in the Cochlea......Page 444
12.2.3 Representation of Sound in the Auditory Nerve......Page 449
12.2.4 Hair Cells......Page 451
12.3.1 AN Responses to Complex Stimuli......Page 457
12.3.2 Tasks of the Central Auditory System......Page 459
12.4 Summary......Page 460
13. Psychoacoustics......Page 466
13.1 Absolute Thresholds......Page 467
13.2 Frequency Selectivity and Masking......Page 468
13.2.2 Psychophysical Tuning Curves......Page 469
13.2.3 The Notched-Noise Method......Page 470
13.2.4 Masking Patterns and Excitation Patterns......Page 471
13.2.5 Forward Masking......Page 472
13.2.6 Hearing Out Partials in Complex Tones......Page 474
13.3 Loudness......Page 475
13.3.3 Neural Coding and Modeling of Loudness......Page 476
13.3.4 The Effect of Bandwidth on Loudness......Page 477
13.3.5 Intensity Discrimination......Page 479
13.4.1 Temporal Resolution Based on Within-Channel Processes......Page 480
13.4.2 Modeling Temporal Resolution......Page 481
13.4.3 A Modulation Filter Bank?......Page 482
13.4.5 Temporal Analysis Based on Across-Channel Processes......Page 483
13.5.1 Theories of Pitch Perception......Page 484
13.5.2 The Perception of the Pitch of Pure Tones......Page 485
13.5.3 The Perception of the Pitch of Complex Tones......Page 487
13.6.2 Time-Varying Patterns and Auditory Object Identification......Page 490
13.7.1 Binaural Cues......Page 491
13.8 Auditory Scene Analysis......Page 492
13.8.1 Information Used to Separate Auditory Objects......Page 493
13.8.2 The Perception of Sequences of Sounds......Page 497
of Perceptual Organization......Page 499
13.9 Further Reading and Supplementary Materials......Page 501
14. Acoustic Signal Processing......Page 509
14.1 Definition......Page 510
14.2 Fourier Series......Page 511
14.2.2 Symmetry......Page 512
14.3 Fourier Transform......Page 513
14.3.1 Examples......Page 514
14.3.4 Products and Convolution......Page 515
14.4.1 Autocorrelation......Page 516
14.5 Statistics......Page 517
14.5.2 Distributions......Page 518
14.5.4 Moments......Page 519
14.6.1 The Analytic Signal......Page 520
14.7.1 One-Pole Low-Pass Filter......Page 521
14.7.4 Impulse Response......Page 522
14.8 The Cepstrum......Page 523
14.9.1 Thermal Noise......Page 524
14.9.2 Gaussian Noise......Page 525
14.10.2 Binary Representation......Page 526
14.10.3 Sampling Operation......Page 527
14.11 Discrete Fourier Transform......Page 528
14.11.1 Interpolation for the Spectrum......Page 529
14.12 The z-Transform......Page 530
14.12.1 Transfer Function......Page 531
14.13 Maximum Length Sequences......Page 532
14.13.3 Long Sequences......Page 533
14.14 Information Theory......Page 534
14.14.1 Shannon Entropy......Page 535
14.14.2 Mutual Information......Page 536
15. Musical Acoustics......Page 537
15.1.1 Normal Modes......Page 539
15.1.2 Radiation from Instruments......Page 541
15.1.3 The Anatomy of Musical Sounds......Page 544
15.1.4 Perception and Psychoacoustics......Page 556
15.2 Stringed Instruments......Page 558
15.2.1 String Vibrations......Page 559
15.2.2 Nonlinear String Vibrations......Page 567
15.2.3 The Bowed String......Page 570
15.2.4 Bridge and Soundpost......Page 574
15.2.5 String–Bridge–Body Coupling......Page 579
15.2.6 Body Modes......Page 585
15.2.7 Measurements......Page 598
15.2.8 Radiation and Sound Quality......Page 602
15.3 Wind Instruments......Page 605
15.3.1 Resonances in Cylindrical Tubes......Page 606
15.3.2 Non-Cylindrical Tubes......Page 610
15.3.3 Reed Excitation......Page 623
15.3.4 Brass-Mouthpiece Excitation......Page 632
15.3.5 Air-Jet Excitation......Page 637
15.3.6 Woodwind and Brass Instruments......Page 641
15.4 Percussion Instruments......Page 645
15.4.1 Membranes......Page 646
15.4.2 Bars......Page 652
15.4.3 Plates......Page 656
15.4.4 Shells......Page 662
16.1 Breathing......Page 672
16.2 The Glottal Sound Source......Page 679
16.3 The Vocal Tract Filter......Page 685
16.4 Articulatory Processes, Vowels and Consonants......Page 690
16.5 The Syllable......Page 698
16.6 Rhythm and Timing......Page 702
16.7 Prosody and Speech Dynamics......Page 704
16.8 Control of Sound in Speech and Singing......Page 706
16.9 The Expressive Power of the Human Voice......Page 709
17. Computer Music......Page 716
17.1 Computer Audio Basics......Page 717
17.2 Pulse Code Modulation Synthesis......Page 720
17.3 Additive (Fourier, Sinusoidal) Synthesis......Page 722
17.4 Modal (Damped Sinusoidal) Synthesis......Page 725
17.5 Subtractive (Source-Filter) Synthesis......Page 727
17.6 Frequency Modulation (FM) Synthesis......Page 730
17.7 FOFs, Wavelets, and Grains......Page 731
17.8 Physical Modeling (The Wave Equation)......Page 733
17.9 Music Description and Control......Page 738
17.11 Controllers and Performance Systems......Page 740
17.12 Music Understanding and Modeling by Computer......Page 741
17.13 Conclusions, and the Future......Page 743
18. Audio and Electroacoustics......Page 746
18.1 Historical Review......Page 747
18.1.1 Spatial Audio History......Page 749
18.2.1 Frequency Response......Page 750
18.2.2 Amplitude (Loudness)......Page 751
18.2.3 Timing......Page 752
18.2.4 Spatial Acuity......Page 753
18.3 Audio Specification......Page 754
18.3.1 Bandwidth......Page 755
18.3.3 Phase Response......Page 756
18.3.4 Harmonic Distortion......Page 757
18.3.6 Speed Accuracy......Page 758
18.3.7 Noise......Page 759
18.4.1 Microphones......Page 760
18.4.2 Records and Phonograph Cartridges......Page 764
18.4.3 Loudspeakers......Page 766
18.4.4 Amplifier......Page 769
18.4.5 Magnetic and Optical Media......Page 770
18.5 Digital Audio......Page 771
18.5.1 Digital Signal Processing......Page 773
18.5.2 Audio Coding......Page 774
18.6 Complete Audio Systems......Page 778
18.6.2 Stereo......Page 779
18.6.5 5.1-Channel Surround......Page 780
18.7 Appraisal and Speculation......Page 781
19.1 Optimized Communication......Page 785
19.2 Hearing and Sound Production......Page 787
19.4 Insects......Page 788
19.5 Land Vertebrates......Page 790
19.6 Birds......Page 795
19.7 Bats......Page 796
19.8 Aquatic Animals......Page 797
19.10 Quantitative System Analysis......Page 799
20. Cetacean Acoustics......Page 805
20.1 Hearing in Cetaceans......Page 806
20.1.1 Hearing Sensitivity of Odontocetes......Page 807
20.1.2 Directional Hearing in Dolphins......Page 808
20.1.3 Hearing by Mysticetes......Page 812
20.2 Echolocation Signals......Page 813
that also Whistle......Page 814
20.2.2 Echolocation Signals of Smaller Odontocetes that Do not Whistle......Page 817
20.2.3 Transmission Beam Pattern......Page 819
20.3.1 Social Acoustic Signals......Page 821
20.3.2 Signal Design Characteristics......Page 823
20.4.1 Songs of Mysticete Whales......Page 827
20.5 Discussion......Page 830
21. Medical Acoustics......Page 838
21.1 Introduction to Medical Acoustics......Page 840
21.2.1 Auscultation – Listening for Sounds......Page 841
21.2.3 Percussion......Page 846
21.3 Basic Physics of Ultrasound Propagation in Tissue......Page 847
21.3.2 Acute-Angle Re ection of Ultrasound......Page 849
21.3.3 Diagnostic Ultrasound Propagation in Tissue......Page 850
21.3.5 Fresnel Zone (Near Field), Transition Zone, and Fraunhofer Zone (Far Field)......Page 852
21.3.7 Attenuation of Ultrasound......Page 854
21.4.1 Continuous-Wave Doppler Systems......Page 856
21.4.2 Pulse-Echo Backscatter Systems......Page 859
21.4.3 B-mode Imaging Instruments......Page 861
21.5 Medical Contrast Agents......Page 881
21.5.2 Stability of Large Bubbles......Page 882
21.5.3 Agitated Saline and Patent Foramen Ovale (PFO)......Page 884
21.5.5 Ultrasound Contrast Agent Development......Page 885
21.5.7 Bubble Destruction......Page 886
21.6 Ultrasound Hyperthermia in Physical Therapy......Page 888
21.7 High-Intensity Focused Ultrasound (HIFU) in Surgery......Page 889
21.8 Lithotripsy of Kidney Stones......Page 890
21.11 Ultrasound Safety......Page 891
22. Structural Acoustics and Vibrations......Page 898
22.1.2 Free Vibrations......Page 900
22.1.4 Harmonic Excitation......Page 901
22.1.6 Mechanical Power......Page 902
22.1.7 Single-DOF Structural–Acoustic System......Page 903
22.2 Discrete Systems......Page 904
22.2.1 Lagrange Equations......Page 905
22.2.2 Eigenmodes and Eigenfrequencies......Page 906
22.2.3 Admittances......Page 907
22.2.4 Example: 2-DOF Plate–Cavity Coupling......Page 908
22.2.5 Statistical Energy Analysis......Page 909
22.3.1 Equations of Motion......Page 910
22.3.2 Heterogeneous String. Modal Approach......Page 911
22.3.3 Ideal String......Page 913
22.3.4 Circular Membrane in Vacuo......Page 916
22.4.2 Flexural Vibrations of Beams......Page 917
22.4.3 Flexural Vibrations of Thin Plates......Page 920
22.4.4 Vibrations of Thin Shallow Spherical Shells......Page 922
22.5 Structural–Acoustic Coupling......Page 923
22.5.1 Longitudinally Vibrating Bar Coupled to an External Fluid......Page 924
22.5.2 Energetic Approach to Structural–Acoustic Systems......Page 929
22.5.3 Oscillator Coupled to a Tube of Finite Length......Page 931
22.5.4 Two-Dimensional Elasto–Acoustic Coupling......Page 933
22.6.1 Modal Projection in Damped Systems......Page 937
22.6.2 Damping Mechanisms in Plates......Page 940
22.6.3 Friction......Page 942
22.7 Nonlinear Vibrations......Page 944
22.7.1 Example of a Nonlinear Oscillator......Page 945
22.7.2 Duf ng Equation......Page 946
22.7.3 Coupled Nonlinear Oscillators......Page 948
22.7.4 Nonlinear Vibrations of Strings......Page 952
22.7.5 Review of Nonlinear Equations for Other Continuous Systems......Page 953
22.8 Conclusion. Advanced Topics......Page 954
23. Noise......Page 958
Unknown......Page 0
23.0.2 Properties of Sound Waves......Page 959
23.0.3 Radiation Ef ciency......Page 961
23.1.1 Introduction......Page 962
23.1.2 Sound Level......Page 963
23.1.5 Octave and One-Third-Octave Bands......Page 964
23.1.6 Sound Level Meters......Page 965
23.1.9 FFT Analyzers......Page 966
23.2.1 Measures of Noise Emission......Page 967
23.2.2 International Standards for the Determination of Sound Power......Page 970
23.2.3 Emission Sound Pressure Level......Page 974
23.2.4 Other Noise Emission Standards......Page 975
23.2.5 Criteria for Noise Emissions......Page 976
23.2.6 Principles of Noise Control......Page 978
23.2.7 Noise From Stationary Sources......Page 981
23.2.8 Noise from Moving Sources......Page 984
23.3.1 Sound Propagation Outdoors......Page 988
23.3.2 Sound Propagation Indoors......Page 990
23.3.3 Sound-Absorptive Materials......Page 992
23.3.4 Ducts and Silencers......Page 995
23.4.1 Soundscapes......Page 996
23.4.3 Measurement of Immission Sound Pressure Level......Page 997
23.4.4 Criteria for Noise Immission......Page 998
23.4.5 Sound Quality......Page 1001
23.5.1 United States Noise Policies and Regulations......Page 1003
23.5.2 European Noise Policy and Regulations......Page 1006
23.6 Other Information Resources......Page 1007
24. Microphones and Their Calibration......Page 1015
24.2.2 Open-Circuit Voltage and Electrical Transfer Impedance......Page 1018
24.2.3 Mechanical Response......Page 1019
24.3.2 Theoretical Considerations......Page 1020
24.3.3 Practical Considerations......Page 1021
24.4.1 Heat Conduction Correction......Page 1023
24.4.2 Equivalent Volume......Page 1025
24.4.3 Capillary Tube Correction......Page 1026
24.4.4 Cylindrical Couplers and Wave-Motion Correction......Page 1028
24.4.5 Barometric Pressure Correction......Page 1029
24.4.6 Temperature Correction......Page 1031
24.4.8 Uncertainty on Pressure Sensitivity Level......Page 1032
24.6.1 Interchange Microphone Method of Comparison......Page 1033
24.6.2 Comparison Method with a Calibrator......Page 1034
24.6.4 Comparison Method with a Precision Attenuator......Page 1036
24.8 Overall View on Microphone Calibration......Page 1037
24.B Physical Properties of Air......Page 1039
25. Sound Intensity......Page 1046
25.1 Conservation of Sound Energy......Page 1047
25.2 Active and Reactive Sound Fields......Page 1048
25.3.1 The p–p Measurement Principle......Page 1051
25.3.2 The p–u Measurement Principle......Page 1059
25.4.1 Noise Source Identi cation......Page 1061
25.4.2 Sound Power Determination......Page 1063
25.4.4 Transmission Loss of Structures and Partitions......Page 1064
25.4.5 Other Applications......Page 1065
26.1 The Methodology of Acoustic Source Identificatio......Page 1069
26.2.1 Introduction and Problem Definition......Page 1071
26.2.2 Prediction Process......Page 1072
26.2.3 Measurement......Page 1077
26.2.4 Analysis of Acoustic Holography......Page 1081
26.A Mathematical Derivations of Three Acoustic Holography Methods and Their Discrete Forms......Page 1084
27.1.1 Chladni Patterns, Phase-Contrast Methods, Schlieren, Shadowgraph......Page 1092
27.1.3 Speckle Metrology: Speckle Interferometry and Speckle Photography......Page 1093
27.1.4 Moiré Techniques......Page 1095
27.2.1 Holographic Interferometry for the Study of Vibrations......Page 1096
27.2.2 Speckle Interferometry – TV Holography, DSPI and ESPI for Vibration Analysis and for Studies of Acoustic Waves......Page 1099
27.2.3 Reciprocity and TV Holography......Page 1104
27.2.4 Pulsed TV Holography – Pulsed Lasers Freeze Propagating Bending Waves, Sound Fields and Other Transient Events......Page 1105
27.2.5 Scanning Vibrometry – for Vibration Analysis and for the Study of Acoustic Waves......Page 1107
27.2.6 Digital Speckle Photography (DSP), Correlation Methods and Particle Image Velocimetry (PIV)......Page 1111
27.3 Summary......Page 1113
28.1 Modes of Vibration......Page 1117
28.2 Experimental Modal Testing......Page 1118
28.2.1 Frequency Response Function......Page 1119
28.2.2 Impact Testing......Page 1120
28.2.3 Shaker Testing......Page 1121
28.2.4 Obtaining Modal Parameters......Page 1122
28.3 Mathematical Modal Analysis......Page 1123
28.3.2 Boundary-Element Methods......Page 1124
28.3.3 Finite-Element Correlation......Page 1125
28.4 Sound-Field Analysis......Page 1126
28.5 Holographic Modal Analysis......Page 1127
Acknowledgements......Page 1129
About the Authors......Page 1130
Detailed Contents......Page 1136
A......Page 1156
B......Page 1157
C......Page 1158
E......Page 1159
F......Page 1160
H......Page 1161
L......Page 1162
M......Page 1163
N......Page 1164
P......Page 1165
R......Page 1166
S......Page 1167
T......Page 1170
Z......Page 1171




نظرات کاربران