دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک کوانتوم ویرایش: Har/Pstr نویسندگان: Alexander W. Chao, Weiren Chou سری: ISBN (شابک) : 9812835202, 9789812835208 ناشر: World Scientific Publishing Company سال نشر: 2008 تعداد صفحات: 338 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 48 مگابایت
کلمات کلیدی مربوط به کتاب بررسی علم و فناوری شتاب دهنده: فیزیک، فیزیک کوانتومی، فیزیک ذرات و میدان های بنیادی، روش های تجربی فیزیک ذرات بنیادی
در صورت تبدیل فایل کتاب Reviews of Accelerator Science and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بررسی علم و فناوری شتاب دهنده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شتاب دهنده های ذرات اختراع بزرگ قرن بیستم هستند. در هشت دهه گذشته، آنها به شدت تکامل یافته اند و اساساً شیوه زندگی، تفکر و کار ما را تغییر داده اند. شتابدهندهها قویترین میکروسکوپها برای مشاهده کوچکترین ساختار درونی سلولها، ژنها، مولکولها، اتمها و اجزای سازنده آنها مانند پروتونها، نوترونها، الکترونها، نوترینوها و کوارکها هستند. این یک دنیای کاملاً جدید را برای علم مواد، شیمی و زیستشناسی مولکولی باز میکند. شتابدهندههای با توان پرتو مگاوات ممکن است در نهایت مشکل حیاتی جامعه ما، یعنی تصفیه زبالههای هستهای و تامین انرژی جایگزین را حل کنند. همچنین ده ها هزار شتاب دهنده کوچک در سراسر جهان وجود دارد. آنها هر روز برای تصویربرداری پزشکی، درمان سرطان، تولید رادیوایزوتوپ، ساخت تراشه با چگالی بالا، طیفسنجی جرمی، تصویربرداری با اشعه ایکس/اشعه گاما، تشخیص مواد منفجره و داروهای غیرقانونی و سلاحها استفاده میشوند. این جلد بررسی جامعی از این رشته رانندگی و جذاب ارائه می دهد.
Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fascinating field.
A Brief History of Particle Accelerators (poster)......Page 8
Editorial Preface......Page 6
1. Resonance Acceleration — The Cyclotron......Page 10
3. Phase Stability — Synchrotron and Synchrocyclotron......Page 11
4. Strong Focusing......Page 12
References......Page 13
1.1. History of electron linacs......Page 16
2.1. Waveguides......Page 17
2.2. The pillbox cavity......Page 18
2.3. Standing-wave structures for high energy copper linacs......Page 20
2.4. Periodic structures......Page 21
2.5. Traveling wave structures......Page 23
2.6.2. Constant impedance structures......Page 24
2.6.4. Vector addition of an rf generator voltage and a beam loading voltage......Page 25
3. Equivalent Circuit for a Cavity with Beam Loading......Page 26
4.2. Plasma spots......Page 28
4.4.2. Calculation of the temperature rise......Page 29
4.5.1. Action of a dc field on a molten metal surface......Page 30
4.5.2. Theory for the growth of the cones shown in Fig. 14......Page 31
4.6. Concluding remarks......Page 32
5.1. Differential superposition......Page 33
5.3. The fundamental theorem of beam loading......Page 34
6.2. The catch-up problem......Page 35
6.4.3. Wake potential and loss factor for a normal mode......Page 36
6.5.1. TM110 mode pillbox cavity......Page 37
6.5.2. The Panofsky–Wenzel theorem......Page 38
6.7.1. The impedance function......Page 39
6.7.2. The Condon method......Page 40
7.3. Regenerative beam breakup......Page 41
7.4. Cumulative beam breakup......Page 42
8.1. Klystrons......Page 43
8.3. Other rf sources......Page 44
9.2. Emittance preservation in a linear collider......Page 45
9.4. The SLC......Page 46
9.8. Rf sources for linear colliders......Page 47
References......Page 49
1. Introduction......Page 52
2.4. Proton and H- linacs......Page 53
2.10. H- injection system development......Page 54
3.2. Studies for an APT proton linac......Page 55
3.5. The superconducting H- linac for the SNS......Page 56
4.1. Developments of the PSI cyclotrons......Page 57
5.2. The 800 MeV proton synchrotron at ISIS......Page 58
5.3. The 797 MeV PSR accumulator ring at LANL......Page 59
5.6. The synchrotron of the Chinese spallation source......Page 60
5.7.2. The AUSTRON 1.6 GeV synchrotron study......Page 61
5.7.4. A 50 Hz, 4 MW H+ driver for a neutrino factory......Page 62
5.7.5. A 50/3 Hz, 4 MW H+ driver for a µ± collider......Page 63
6.3. Non-scaling, 10 GeV neutrino factory driver......Page 64
6.4. Non-scaling, linear focusing FFAG drivers......Page 65
7.1.2. MEBT chopper, collimator and matching section......Page 66
7.1.4. Coherent beam envelope motion......Page 67
7.1.6. Funnel section......Page 68
7.2.4. H- charge exchange injection......Page 69
9. International Collaborations......Page 70
10. Future Developments......Page 71
References......Page 72
1. Introduction......Page 74
2.1. Berkeley beginnings......Page 76
2.2. Isochronism and focusing......Page 78
2.3. Discoveries and applications......Page 79
2.4. Beyond Berkeley......Page 80
3. Synchrocyclotrons......Page 81
4.1. Radial-sector cyclotrons......Page 84
4.2. Spiral-sector cyclotrons......Page 85
4.3. Separated-sector ring cyclotrons......Page 88
4.4. Superconducting compact cyclotrons......Page 89
4.5. Separated-orbit cyclotrons......Page 90
5.1. Invention and principles......Page 91
5.1.2. Recent developments......Page 92
5.2.3. Nonlinear orbits......Page 93
5.2.4. RF acceleration......Page 95
5.2.6. Colliding beams......Page 96
5.3. FFAGs in the 1980s......Page 97
5.4. Recent scaling FFAGs......Page 98
5.5. Linear non-scaling (LNS) FFAGs for muons......Page 99
5.6. LNS FFAGs for protons and heavy ions......Page 101
Acknowledgments......Page 103
References......Page 104
1. Introduction......Page 108
2.2. The first steps......Page 109
2.3. Luminosity I......Page 110
2.4. The next generation......Page 111
2.6. Concentration on colliders......Page 113
3.1. The Tevatron......Page 114
3.1.1. Quench sensitivity......Page 115
3.2. HERA......Page 116
3.3. Synchrotron radiation......Page 117
3.4. Factories......Page 119
4. Beam Dynamics and Single-Particle Stability......Page 120
4.1. The Large Hadron Collider......Page 121
5. Future......Page 123
5.1. The International Linear Collider......Page 124
5.2. The Compact Linear Collider......Page 125
5.3.2. Muon rings......Page 126
5.3.3. A new direction?......Page 127
References......Page 128
1. Introduction......Page 130
2.2. Relevant motion......Page 131
2.3. Retarded potentials......Page 132
3. Radiation Field and Power......Page 133
3.2. Instantaneous emitted field and power......Page 134
4.1. Geometry......Page 135
4.3. Qualitative polarization......Page 136
4.5. Spectrum......Page 137
5. Weak Undulator Radiation......Page 138
5.1. Qualitative treatment......Page 139
5.3. Angular spectral power density......Page 140
6. Strong Undulators and Wiggler Magnets......Page 141
7.2. Electron storage rings......Page 143
7.3. Quantum effects......Page 145
7.4. Radiation emitted by many particles......Page 146
8. Free Electron Laser......Page 147
References......Page 149
1.1. Radiation properties......Page 152
1.2. Treatment modalities......Page 153
2. Demand of Radiotherapy Facilities......Page 155
3.2. Accelerators for IBT......Page 156
3.3. IBT facilities planned or under construction......Page 158
3.4.1. Accelerators for neutron therapy......Page 160
3.4.3. Radioisotope production......Page 161
4.1. Gantries......Page 162
4.2. Use of radioactive beams......Page 164
4.3. Alternative accelerator structures......Page 165
4.4.2. Advanced positioning — and diagnostic systems......Page 166
5.2. The optimum ion......Page 167
5.4. Cost aspects......Page 168
References......Page 169
1. Introduction......Page 172
2.2. Radio frequency linear accelerators......Page 173
3. Industrial Accelerator Applications......Page 174
3.1. Ion implantation accelerators......Page 175
3.2.1. Electron beam welding and cutting......Page 179
3.2.2. Electron beam irradiation accelerators......Page 181
3.3. Ion beam analysis accelerators......Page 186
3.4. Radioisotope production accelerators......Page 187
3.5. Nondestructive testing accelerators......Page 189
3.7. Synchrotron radiation accelerators......Page 190
5. Conclusion......Page 191
References......Page 192
1. Introduction......Page 194
2. Superconducting Accelerator Magnets......Page 195
2.1.1. Superconductor cable development......Page 196
2.1.2. Fabrication of the coil package......Page 197
2.1.3. Constraining the forces......Page 198
2.1.4. Field errors......Page 199
2.1.5. Persistent current e.ects......Page 200
3.1. The cryostat and yoke......Page 201
3.3. Quench protection......Page 202
3.4. Progress at other machines......Page 203
4.1. Design......Page 204
4.2. Production and quality control of components and assembly......Page 208
4.3.1. Test strategy......Page 210
4.3.2. Systematic values......Page 211
4.3.3. Random components at room temperature......Page 212
4.3.4. Warm-cold correlations......Page 213
4.3.5. Dynamic effects......Page 214
4.5. Installation strategy......Page 215
5. Outlook for Future Accelerator Magnets......Page 216
References......Page 217
1. Introduction......Page 220
2.2. Heavy ion accelerator......Page 222
2.3. High energy storage ring......Page 223
2.4. High current acceleration......Page 226
3.1. Shunt impedance......Page 228
3.2.1. Effect of external magnetic field......Page 229
3.3. Field limitation......Page 230
3.3.2. Thermal breakdown......Page 231
4.2. Fabrication......Page 232
4.2.4. HPR......Page 233
5.2.1. HOM impedance......Page 234
5.2.2. Ferrite damper......Page 235
5.2.4. Power coupler......Page 236
6.1. Crab cavity......Page 237
6.3. Commissioning......Page 238
7.1. International Linear Collider (ILC)......Page 239
7.2. Energy Recovery Linac (ERL)......Page 242
References......Page 243
1. Introduction......Page 246
2. Radiation Cooling......Page 247
3. Ionization Cooling......Page 249
4.1. NAP-M, the first storage ring with electron cooling......Page 253
4.2. Cooling diagnostics......Page 255
4.3.3. Electron beam temperature......Page 256
4.3.5. Vacuum......Page 257
4.4.1. Friction force......Page 258
4.4.3. Recombination......Page 259
4.5.3. Electron “heating”......Page 260
5. Stochastic Cooling......Page 261
6. Laser Cooling......Page 262
7. Some Examples of Using Beam Cooling......Page 263
References......Page 264
1. Introduction......Page 268
2. The Early 1980’s......Page 269
3. Formation of a New Subpanel......Page 272
4. New Subpanel Activities and Related Events......Page 273
5. The Subpanel’s Recommendation......Page 276
6. Pre–Central Design Group Events......Page 277
7. Central Design Group (CDG) Overview......Page 280
8. Magnet Design and Other Technical Activities......Page 281
9. Conventional Facilities Plans......Page 285
10. The Conceptual Design Report, CDR (1986)......Page 286
12. The CDG and the US HEP Community......Page 287
13. The CDG and the General Public......Page 289
14. International Collaboration Issues......Page 291
16. Site Selection......Page 294
17. Post-CDR Technical Activities......Page 297
18. Starting the SSC — Getting Congressional Approval......Page 298
19. Starting the SSC — Management Issue......Page 301
Appendix A. Glossary of Abbreviations......Page 305
References......Page 306
2.1. Nuclear physics......Page 312
2.2. High energy physics......Page 314
2.3. Condensed matter physics, chemistry, and biology......Page 316
2.4. National defense......Page 317
2.6. Industry......Page 318
3.1. The people......Page 319
3.2. The laboratories......Page 321
3.3. Communication and interaction......Page 322
4.1. Drivers......Page 323
4.2. New accelerator science......Page 324
4.3. Final words......Page 325
Acknowledgments......Page 326
Nature and Nurture: Pief ’s Early Life......Page 328
High School in Hamburg; University at Princeton and Caltech......Page 329
Events Leading up to the Loyalty Oath......Page 330
Stanford, the Microwave Lab and HEPL......Page 331
Building SLAC......Page 332
Physics Research at SLAC in the First Ten Years......Page 334
Other Accelerator Activities under Pief......Page 335
Science Advising and International Science......Page 336
Arms Control (1981–2007): The Unfinished Business......Page 337