ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Reticular Chemistry and Applications: Metal-Organic Frameworks

دانلود کتاب شیمی شبکه و کاربردها: چارچوب های فلزی-آلی

Reticular Chemistry and Applications: Metal-Organic Frameworks

مشخصات کتاب

Reticular Chemistry and Applications: Metal-Organic Frameworks

ویرایش:  
نویسندگان: ,   
سری: De Gruyter STEM 
ISBN (شابک) : 9781501524707 
ناشر: Walter de Gruyter 
سال نشر: 2023 
تعداد صفحات: 397
[398] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Reticular Chemistry and Applications: Metal-Organic Frameworks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی شبکه و کاربردها: چارچوب های فلزی-آلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب شیمی شبکه و کاربردها: چارچوب های فلزی-آلی

در یک سطح اساسی، شیمی شبکه‌ای یک سفر محرک فکری از طریق کشف، طراحی منطقی، خصوصیات ساختاری، و ویژگی‌ها و کاربردهای مبتنی بر فناوری ارائه می‌دهد. گستردگی علم، تکنیک ها و کاربردهای تجربه شده از طریق شیمی شبکه ای در سایر زمینه ها دیده نمی شود. بر این اساس، بر اساس 30 سال تحقیق گزارش شده، شیمی مشبک و کاربردها: چارچوب های آلی فلزی به طور انتقادی مهمترین دانش و دانش موجود برای کمک به شیمیدانان قدیمی و جدید شبکه ای را برای شروع پروژه ای بر اساس این مواد جذاب توضیح می دهد. بررسی اجمالی رویکردهای پیشرفته در طراحی، سنتز، و خصوصیات ساختاری چارچوب‌های فلزی-آلی (MOF) که برای جذب و تبدیل دی‌اکسید کربن، ذخیره‌سازی متان و هیدروژن، و MOF‌های کاتالیز صنعتی-عملی برای تبدیل انرژی استفاده می‌شوند. و ذخیره‌سازی، تصفیه و برداشت آب، و تحویل هدفمند مولکول‌های مرتبط با بیولوژیک مشارکت‌های یک کنسرسیوم بین‌المللی چند رشته‌ای متشکل از شیمیدانان مشبک بسیار معتبر


توضیحاتی درمورد کتاب به خارجی

At a fundamental level, reticular chemistry offers an intellectually-stimulating journey through discovery, rational design, structural characterization, and technology-driven properties and applications. The breadth of science, techniques, and applications experienced through reticular chemistry is unseen in other fields. Accordingly, based on 30 years of reported research, Reticular Chemistry and Applications: Metal-Organic Frameworks critically details the most important knowledge and know-how available to help old and new reticular chemists alike embark on a project based on these fascinating materials. Overview of the state-of-the-art approaches in design, synthesis, and structural characterization of metal-organic frameworks (MOFs) MOFs applied toward carbon dioxide capture and conversion, methane and hydrogen storage, and industrially-practical catalysis MOFs for energy conversion and storage, water purification and harvesting, and targeted delivery of biologically-relevant molecules Contributions from a multidisciplinary, international consortium of widely-respected reticular chemists



فهرست مطالب

Cover
Half Title
Also of Interest
Reticular Chemistry and Applications: Metal-Organic Frameworks
Copyright
Foreword
Contents
List of Contributing Authors
1. Introduction to reticular chemistry and its applications
	1.1 History
	1.2 Reticular chemistry as a field of study
	1.3 Understanding the fundamentals of reticular chemistry and its applcations
	Bibliography
2. Reticular design and synthesis strategies of metal-organic frameworks
	2.1 Introduction
	2.2 Reticular design of metal-organic frameworks
		2.2.1 Organic linkers
		2.2.2 Secondary building units (SBUs)
	2.3 MOF synthesis
		2.3.1 Conventional synthesis
			2.3.1.1 Liquid-phase synthesis
				2.3.1.1.1 Slow vapor diffusion
				2.3.1.1.2 Solvothermal method
				2.3.1.1.3 Electrochemical method
				2.3.1.1.4 Sonochemical method
				2.3.1.1.5 Microwave method
				2.3.1.1.6 Ionothermal method
				2.3.1.1.7 Flow chemistry method
			2.3.1.2 Solid-phase synthesis
		2.3.2 Sustainable (green) synthesis
			2.3.2.1 MOFs based on waste polymers
				2.3.2.1.1 PET-derived MOFs
					2.3.2.1.1.1 MOFs based on a one-pot synthesis
					2.3.2.1.1.2 MOFs based on a two-step synthesis
				2.3.2.1.2 PLA-derived MOFs
			2.3.2.2 MOFs based on waste metal sources
			2.3.2.3 MOFs based on waste organic linkers and waste metal sources
			2.3.2.4 MOFs based on green solvents
		2.3.3 Effect of reaction conditions on MOF synthesis
			2.3.3.1 Effect of solvent
			2.3.3.2 Effect of pH
			2.3.3.3 Effect of temperature
			2.3.3.4 Effect of molar ratio of reactants
			2.3.3.5 Effect of other parameters
	2.4 Conclusion
	Bibliography
3. Metal-organic frameworks in the age of machine learning
	3.1 Introduction
	3.2 The machine learning landscape
		3.2.1 Supervised learning
		3.2.2 Unsupervised learning
		3.2.3 Reinforcement learning
	3.3 The machine learning pipeline
		3.3.1 Data collection
		3.3.2 Algorithm selection
			3.3.2.1 Parametric and nonparametric methods
			3.3.2.2 Overfitting and underfitting
			3.3.2.3 Hyperparameters tuning
	3.4 Machine learning algorithms
		3.4.1 Decision trees
		3.4.2 Neural networks
		3.4.3 Ensemble learning
			3.4.3.1 Random forest
			3.4.3.2 Gradient boosted trees
	3.5 Applications of ML in MOFs research
		3.5.1 Gas storage
		3.5.2 Gas separation
	3.6 Conclusions
	Bibliography
4. Structure elucidation and advanced characterization techniques
	4.1 Introduction
	4.2 Crystal growth and crystallization
	4.3 X-ray diffraction
		4.3.1 Structure solution from single crystal X-ray diffraction
			4.3.1.1 Patterson method [12–14]
			4.3.1.2 Direct methods [12–14]
			4.3.1.3 Structure refinement [12]
		4.3.2 Structure elucidation using powder X-ray diffraction
			4.3.2.1 Indexing and space group determination [16, 17]
			4.3.2.2 Structure solution [18, 19]
			4.3.2.3 PXRD structure refinement [17]
		4.3.3 Structure determination of MOFs
		4.3.4 Diffraction studies on the formation mechanism of MOFs
	4.4 Electron diffraction
		4.4.1 Protocols of 3DED
		4.4.2 Structure determination
			4.4.2.1 Data processing
			4.4.2.2 Structure solution
			4.4.2.3 Structure refinement
		4.4.3 Applications of 3DED for studies of MOFs
	Bibliography
5. Metal-organic frameworks for industrial gas separation
	5.1 Introduction
	5.2 Air separation (nitrogen/oxygen separation)
	5.3 Noble gas purification
	5.4 Light hydrocarbons separation
		5.4.1 Separation of methane from C2−4 hydrocarbons
		5.4.2 Light alkene/alkane separation
		5.4.3 Light alkene/alkyne separation
		5.4.4 C4 hydrocarbon separation
	5.5 Summary
	Bibliography
6. Development of MOF-based membranes for gas and water separation
	6.1 Introduction
	6.2 MOF membrane fabrication strategies
		6.2.1 Methods for the fabrication of pure MOF membranes
			6.2.1.1 Solvothermal and hydrothermal techniques
			6.2.1.2 Microwave induced synthesis
			6.2.1.3 Layer-by-layer liquid phase epitaxy
			6.2.1.4 Self-assembled monolayer
			6.2.1.5 Secondary growth
			6.2.1.6 Electrochemical reaction
			6.2.1.7 Spray-drying synthesis
		6.2.2 Methods for the fabrication of MOF-modified polymeric membranes
			6.2.2.1 Phase inversion technique
			6.2.2.2 Surface coating
			6.2.2.3 Electrospinning
			6.2.2.4 Interfacial polymerization
	6.3 MOF-based membranes for separation applications
		6.3.1 MOF-based membranes for gas separation
		6.3.2 MOF-based membranes for water purification
			6.3.2.1 Effect of MOF incorporation on membrane water flux and rejection
			6.3.2.2 Organic/Inorganic fouling resistance
			6.3.2.3 Antibacterial resistance
			6.3.2.4 Adsorption behavior
	6.4 Challenges associated with MOF-based membrane fabrication and performance limitation
		6.4.2 Water applications
		6.4.1 Gas applications
	6.5 Conclusion and future directions
	Bibliography
7. Metal-organic frameworks for CO2 capture and conversion
	7.1 Introduction
	7.2 Conventional materials used in CO2 capture
		7.2.1 Aqueous alkanolamine absorbents
		7.2.2 Activated carbons
		7.2.3 Zeolites
	7.3 MOFs in CO2 uptake
		7.3.1 CO2 capture processes
		7.3.2 Designs of MOFs for CO2 capture
			7.3.2.1 Heterocyclic linkers
			7.3.2.2 Amino and other functional groups
			7.3.2.3 Fluorination of MOFs
			7.3.2.4 Ozonolysis of MOFs
		7.3.3 MOF membranes for CO2 capture
		7.3.4 MOF regeneration
	7.4 MOFs for CO2 conversion
		7.4.1 CO2 photocatalytic conversion
		7.4.2 Kinetics of CO2 photoreduction
		7.4.3 Electrocatalytic conversion of CO2
		7.4.4 MOF composites in photocatalytic and electrocatalytic conversion of CO2
		7.4.5 Production cost of MOF-based systems for CO2 capture and conversion
	7.5 Conclusion
	Bibliography
8. Metal-organic frameworks as adsorbents for onboard fuel storage
	8.1 Fundaments of adsorption
	8.2 Metal-organic frameworks for onboard natural gas storage
		8.2.1 Natural gas for lower CO2 emission
		8.2.2 The current status of metal-organic frameworks for methane storage
		8.2.3 Strategies for improving methane storage capacities of metal-orga
		8.2.4 Coordinately unsaturated metal sites (CUSs)
		8.2.5 CUSs in traditional MOFs
		8.2.6 CUSs in nbo-based MOFs
		8.2.7 CUSs in rht-type copper–hexacarboxylate MOFs
		8.2.8 Framework functionalization for enhancing the methane uptake capacity
		8.2.9 Flexible MOFs for enhancing working capacity
		8.2.10 Designing MOFs to balance volumetric and gravimetric working capacities
		8.2.11 Sol-gel approach for the synthesis of monolithic MOFs, a promising direction toward the practical use of MOFs for methane storage
		8.2.12 Perspective methane storage by MOFs
	8.3 Metal-organic frameworks for onboard hydrogen storage
		8.3.1 H2 fuel for zero CO2 emission
		8.3.2 The current status of MOFs for hydrogen storage
		8.3.3 H2 storage at cryogenic temperatures—effect of pore size, pore volume and surface area
		8.3.4 H2 storage at cryogenic temperatures—effect of metal ions
		8.3.5 H2 storage at cryogenic temperatures—effect of linkers
		8.3.6 H2 storage at ambient conditions
		8.3.7 Perspective H2 storage by MOFs
	Bibliography
9. Catalytic transformations in metal-organic framework systems
	9.1 Introduction
	9.2 Catalysis by MOFs: characteristics, advantages and strategies
	9.3 Metal nodes as active catalytic sites in MOF materials
		9.3.1 Catalysis by Lewis acid metal nodes
		9.3.2 Catalysis by Brønsted acid metal nodes
		9.3.3 Catalysis by basic metal centers
	9.4 Catalysis by functionalized linkers
		9.4.1 Catalysis by basic functional groups
		9.4.2 Catalysis by Brønsted acidic functional groups
		9.4.3 Catalysis by organometallic complexes attached to MOF linkers
		9.4.4 Catalysis by organocatalytic moieties on the MOF linker
	9.5 Post-synthetic modification for introducing catalytic active sites in MOFs
		9.5.1 Post-synthetic metal exchange (PSME) in MOFs
		9.5.2 Post-synthetic metalation in MOFs
		9.5.3 Post-synthetic ligand exchange (PSLE) in MOFs
		9.5.4 Integration of guest molecules into MOFs
			9.5.4.1 The “ship in a bottle” approach
			9.5.4.2 The aperture opening approach
	9.6 Catalysis through MOF composites
		9.6.1 MOF-metal nanoparticle composites
		9.6.2 MOF-POM composites
		9.6.3 MOF-enzyme composites
		9.6.4 MOF-silica composites
		9.6.5 MOF-polymer composites
		9.6.6 MOF-MOF composites
	9.7 Multilinker and/or -metal multivariate MOFs as catalytic systems
	9.8 MOFs-based photocatalysis
	9.9 Conclusion and future directions
	Bibliography
10. MOFs for energy conversion and storage through water electrolysis
	10.1 Introduction
	10.2 Water splitting reactions
	10.3 Intrinsic properties of metal-organic frameworks
		10.3.1 Hybrid conditions
		10.3.2 Permanent porosity
		10.3.3 Post-synthetic modification
		10.3.4 Structural stability in aqueous environment
	10.4 MOFs as electrocatalysts
		10.4.1 MOFs as catalysts for hydrogen evolution reactions
			10.4.1.1 Pristine MOFs
			10.4.1.2 MOFs as porous scaffolds/supports
			10.4.1.3 MOFs as sacrificial precursors
		10.4.2 MOFs as electrocatalysts for the OER reactions
			10.4.2.1 Pristine MOFs
			10.4.2.2 MOFs as precursors for metal-oxides/hydroxides
	10.5 Conclusion and outlook
	Bibliography
11. Metal-organic frameworks for clean water generation: from purification to harvesting
	11.1 Introduction
	11.2 Water purification
		11.2.1 Adsorption of pollutants
			11.2.1.1 Adsorption of organic contaminants
			11.2.1.2 Adsorption of inorganic pollutants
			11.2.1.3 Dual adsorption of organic and inorganic pollutants
		11.2.2 Catalytic degradation
			11.2.2.1 Degradation of organics
			11.2.2.2 Degradation of inorganics
		11.2.3 Microfiltration and ultrafiltration
		11.2.4 Oil and water separation
	11.3 Desalination
	11.4 Water adsorption in MOFs
	11.5 Conclusion
	Bibliography
12. Insights into host-drug interactions in metal-organic frameworks
	12.1 Introduction
	12.2 Drug-metal-organic framework (MOF) interactions
		12.2.1 Biomolecules and MOFs
		12.2.2 Targeted drug delivery
	12.3 Computational modeling of metal-organic frameworks
		12.3.1 Quantum mechanics approach
		12.3.2 Classical mechanics approach
			12.3.2.1 Molecular dynamics
			12.3.2.2 Grand canonical Monte Carlo simulations
		12.3.3 QM/MM hybrid approach
		12.3.4 Molecular docking
	12.4 Factors affecting host-guest interactions in MOFs
		12.4.1 The Effect of Cage and Pore Size
		12.4.2 Functionalization of organic linkers
		12.4.3 Coordinatively unsaturated metal sites
		12.4.4 Diffusivity
		12.4.5 Loading capacity
	12.5 Future directions
	Bibliography
13. Future perspectives: are metal-organic frameworks deployable beyond the laboratory?
	13.1 Introduction
	13.2 Blossoming of MOF research
	13.3 The power of machine learning combined with trials learning
	13.4 MOF development: the next stage
		13.4.1 Form and scale of MOFs
		13.4.2 Process scale-up involving MOFs
		13.4.3 Techno-economic feasibility
	Bibliography
Index




نظرات کاربران