دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Bahar Acu, Catherine Cannizzo, Dusa McDuff, Ziva Myer, Yu Pan, Lisa Traynor سری: Association for Women in Mathematics Series, 27 ISBN (شابک) : 3030809781, 9783030809782 ناشر: Springer سال نشر: 2022 تعداد صفحات: 346 [341] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Research Directions in Symplectic and Contact Geometry and Topology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای تحقیق در هندسه و توپولوژی سمپلتیک و تماسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface About This Volume About the 2019 WiSCon Workshop Acknowledgments Contents Introduction Paper 1: A Polyfold Proof of Gromov's Nonsqueezing Theorem Paper 2: Infinite Staircases for Hirzebruch Surfaces Paper 3: Action-Angle and Complex Coordinates on Toric Manifolds Paper 4: An Introduction to Weinstein Handlebodies for Complements of Smooth Toric Divisors Paper 5: Constructions of Lagrangian Cobordisms Paper 6: On Khovanov Homology and Related Invariants Paper 7: Braids, Fibered Knots, and Concordance Questions A Polyfold Proof of Gromov's Non-squeezing Theorem 1 Introduction 1.1 Polyfold Notions and Regularization Theorems 2 Outline of the Proof 2.1 Compactifying the Target Space 2.2 The Unique J0-Holomorphic Curve 2.3 Using the Monotonicity Lemma 2.4 A Compact Moduli Space 2.5 Applying the Polyfold Regularization Scheme 3 Polyfold Setup 3.1 The Gromov-Witten Space of Stable Curves 3.2 Trivial Isotropy 3.3 The Base Space 3.4 The Bundle 3.5 The Section 3.6 Linearization 3.7 Transversality at the Boundary Appendix 1: The Monotonicity Lemma for Pseudoholomorphic Maps References Infinite Staircases for Hirzebruch Surfaces 1 Introduction 1.1 Overview of Results 1.2 Organization of the Paper 2 Embedding Obstructions from Exceptional Spheres 2.1 The Role of Exceptional Spheres 2.2 Characterizing Staircases 2.3 Blocking Classes 2.4 Pre-staircases and Blocking Classes 3 The Fibonacci Stairs, Its Cognates, and Beyond 3.1 The Main Theorems 3.2 Proof of Theorems 56 and 1 3.3 Proof of Theorems 54, 58, 2 and 5 3.4 Cremona Reduction 4 Obstructions from ECH Capacities 4.1 Toric Domains 4.2 ECH Capacities and Exceptional Classes 4.3 There Is No Infinite Staircase for b=1/5 5 Mathematica Code 5.1 Computing Many ECH Capacities of Xb Quickly 5.2 Obstructions from Single ECH Capacities and a Lower Bound for cHb 5.3 Obstructions from Exceptional Classes 5.4 Strategy for Finding Staircases 5.5 Plots of Ellipsoid Embedding Functions References Action-Angle and Complex Coordinates on Toric Manifolds 1 Introduction 2 Toric Manifolds as Symplectic Quotients 2.1 Complex Geometric Quotients 2.2 Symplectic Quotients 2.3 Canonical Line Bundle KM of a Toric Manifold M 3 Toric Actions and Moment Maps 3.1 Toric Tn-action on M and Its Moment Map 3.2 Canonical Bundle KM Continued 3.3 Holomorphic Coordinate Charts for M 3.4 Justification of Choices for KM 3.5 Moment Map for KPn in Homogeneous Coordinates 4 Kähler Potential 5 Connection to Mirror Symmetry 5.1 Mirror Symmetry for Calabi-Yau Manifolds 5.2 Mirror Symmetry for Landau-Ginzburg Models 5.3 Monodromy in Mirror Symmetry 6 Notation References An Introduction to Weinstein Handlebodies for Complements of Smoothed Toric Divisors 1 Introduction 1.1 Main Results 2 Weinstein Handlebodies and Kirby Calculus 2.1 Weinstein Handle Structure 2.2 Weinstein Kirby Calculus 3 The Local Model for Our Handle Attachment 4 The Algorithm Through an Example 5 A More Complicated Example: Smoothing a Toric Divisor in CP2 # 3CP2 References Constructions of Lagrangian Cobordisms 1 Introduction 2 Background 2.1 Legendrian Knots and Links 2.2 Lagrangian Cobordisms 2.3 Obstructions to Lagrangian Cobordisms 3 Combinatorial Constructions of Lagrangian Cobordisms 3.1 Decomposable Moves 3.2 Guadagni Moves 3.3 Lagrangian Diagram Moves 4 Geometrical Constructions of Lagrangian Cobordisms 4.1 The Legendrian Satellite Construction 4.2 Lagrangian Cobordisms for Satellites 4.3 Obstructions to Cobordisms Through Satellites 5 Candidates for Non-decomposable Lagrangian Cobordisms 5.1 Candidates for Non-decomposable Lagrangian Cobordisms from Normal Rulings 5.2 Candidates for Non-decomposable Lagrangian Concordances from Topology 5.3 Candidates for Non-decomposable Lagrangian Cobordisms from GRID Invariants 5.4 Non-decomposable Candidates Through Surgery 6 Conclusion References On Khovanov Homology and Related Invariants 1 Introduction 2 A Survey of Applications of Khovanov Homology 2.1 Rasmussen's s-Invariant 2.2 Mutants 2.3 Ribbon Concordance 2.4 Unknotting and Unlinking via Spectral Sequences 2.5 sl(n) Homology and HOMFLY-PT Homology 3 Link Homologies and Ribbon Concordance 4 Gordian Distance and Spectral Sequences in Khovanov Homology 4.1 Results 4.2 Examples 4.3 Proofs References Braids, Fibered Knots, and Concordance Questions 1 Introduction 2 Background on Fractional Dehn Twist Coefficient and Braids 2.1 The Braid Group 2.2 Fractional Dehn Twist Coefficient 2.3 Dehornoy's Braid Ordering 3 Concordance Invariants and Genus Bounds 4 Quasipositive Braids and the FDTC Bounds 5 An Interesting Example 6 Potential Bounds on Slice Genus from the Braid Perspective 7 Fibered Knots and Knot Floer Stable Equivalence 8 Fractional Dehn Twist Coefficient of Fibered Slice Knots References Photographs