دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Domenico P. Coiro, Tonio Sant سری: IET Energy Engineering Series, 129 ISBN (شابک) : 1785617664, 9781785617669 ناشر: The Institution of Engineering and Technology سال نشر: 2019 تعداد صفحات: 480 [481] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 52 Mb
در صورت تبدیل فایل کتاب Renewable Energy from the Oceans: From wave, tidal and gradient systems to offshore wind and solar به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انرژی های تجدیدپذیر از اقیانوس ها: از سیستم های موج، جزر و مد و گرادیان گرفته تا باد و خورشید در دریا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راههای زیادی برای استفاده از انرژی تجدیدپذیر و بدون انتشار در دسترس اقیانوسهای زمین وجود دارد. این فناوری ها شامل انرژی موج، انرژی جزر و مد و جریان، و انرژی حاصل از گرادیان های حرارتی و شوری است. علاوه بر این، انرژی باد فراساحلی و آرایه های خورشیدی دریایی (شناور) امکان بهره برداری از منابع وسیعی را که به مراتب بزرگتر از منابع موجود در خشکی هستند، فراهم می کند. ظرفیت های بالقوه از صدها گیگاوات تا تراوات تولید متغیر است. این فناوری ها می توانند بخش قابل توجهی از تقاضای جهانی برق را تامین کنند. آنها به ویژه برای ارائه نیروی پایدار به مناطق دریایی و جوامع جزیره ای و ملت ها مناسب هستند.
این کتاب مشارکت های کارشناسان بین المللی با پیشینه های دانشگاهی و صنعتی را گرد هم می آورد تا یک نمای کلی سیستماتیک از آن ارائه دهد. فناوریهای انرژی اقیانوس، آمادگی و مدلسازی آنها، و همچنین فناوریهای نصب و اتصال به شبکه.
There are many ways to harness the renewable and emissions-free energy available from the Earth's oceans. The technologies include wave energy, tidal and current energy, and energy from thermal and salinity gradients. In addition, offshore wind energy and marine (floating) solar arrays offer a possibility to exploit vast resources that are far larger than those available onshore. The potential capacities range from many hundreds of gigawatts to terawatts of generation. These technologies could contribute a significant part of the global electricity demand; they are particularly suitable for providing sustainable power to marine regions and island communities and nations.
This book brings together contributions from international experts with academic and industry backgrounds to provide a systematic overview of ocean energy technologies, their readiness and modelling, as well as installation and grid connection technologies.
Cover Contents Preface 1 A review of progress on ocean energies 1.1 A risky business 1.2 In the beginning 1.3 Shocks to the system 1.4 The challenge of ocean energy 1.5 Technology Readiness Levels 1.6 Wave energy – TRL 7 1.7 Tidal and current energy 1.7.1 Tidal range – TRL 9 1.7.2 Tidal stream – TRL 8 1.8 Thermal and salinity gradient systems 1.8.1 Ocean thermal energy conversion – TRL 8 1.8.2 Salinity gradient – TRL 4 1.9 Offshore wind – TRL 8 1.10 Marine solar 1.11 Enabling technologies and actions References 2 Wave energy 2.1 The wave resource 2.1.1 Wave resource assessment 2.1.1.1 Methods 2.1.1.2 Mediterranean wave assessment 2.1.1.3 Wave assessment at Pantelleria 2.1.1.4 Conclusions 2.1.2 Wave measurements 2.1.2.1 Wave characterization for energy applications 2.1.2.2 Instrumentation for wave measurement 2.1.2.3 Staff gauges 2.1.2.4 Laser range finder 2.1.2.5 Pressure sensors 2.1.2.6 Wave measurement buoys 2.1.2.7 Acoustic Doppler current profilers 2.1.2.8 X-band radar 2.1.2.9 HF-radar 2.1.2.10 Satellites 2.2 Wave energy devices 2.2.1 The ISWEC plant at Pantelleria 2.2.1.1 Introduction 2.2.1.2 The ISWEC 2.2.1.3 ISWEC evolution: from model to full-scale device 2.2.1.4 The ISWEC prototype plant at Pantelleria 2.2.1.5 Conclusions 2.2.2 Harbour breakwaters for wave energy conversion 2.2.2.1 Breakwater-integrated WECs 2.2.2.2 Site-specific design challenges 2.2.2.3 Breakwater-integrated oscillating water column 2.2.2.4 Breakwater-integrated overtopping device 2.2.2.5 Full-scale devices 2.2.2.6 Conclusions 2.2.3 Overview of the development of a pivoting buoy system 2.2.3.1 System configuration and operation 2.2.3.2 System modelling 2.2.3.3 Small-scale model test of the pivoting system 2.2.3.4 Optimization based on potential flow simulation 2.2.3.5 Large-scale prototype 2.3 PTO development 2.3.1 Introduction 2.3.2 Design and test methods 2.3.3 Innovative PTOs 2.3.4 Magnetic gears 2.3.5 Dielectric elastomer PTO 2.3.6 Electromechanical ballscrew-based PTO 2.3.7 Conclusions 2.4 Modelling and control8 2.4.1 WEC models 2.4.1.1 CFD-based models 2.4.1.2 Boundary element models 2.4.2 WEC control 2.4.2.1 WEC control basics 2.4.2.2 WEC control structures References 3 Tidal and current energy 3.1 Introduction 3.1.1 Characteristics of tidal current energy 3.1.1.1 Predictability 3.1.1.2 Daily and two-weekly variation in tidal current energy 3.1.1.3 Energy production estimation 3.1.2 Basic physics of tidal energy 3.2 The resource 3.3 Tidal rise and fall concepts 3.3.1 Tidal barrages 3.3.2 Tidal lagoons 3.3.3 Dynamic tidal power barriers 3.3.4 Turbines for tidal rise and fall schemes 3.4 Tidal bridges and fences 3.5 Tidal, ocean current and river HKTs 3.6 Differences between hydrokinetic and wind energy 3.6.1 Limited depth suitable for turbines 3.6.2 Tidal and ocean current flow velocities are lower than wind 3.6.3 Much higher fluid density 3.6.4 Cavitation 3.6.5 Predictability 3.6.6 Bidirectional flow 3.6.7 Limited flow field 3.6.8 Floating debris 3.7 Axial flow turbines 3.8 Crossflow turbines 3.9 Ducts and diffusers 3.10 'Flying' turbines 3.11 Oscillating foils 3.12 Vortex shedding 3.13 Tidal sails 3.14 Arrays 3.14.1 Tidal farm layout 3.14.2 Mixing and wake recovery – streamwise and lateral spacing 3.15 Economics 3.16 Actual progress to date on large-scale grid-connected hydrokinetic power 3.17 Case study – development of GEM, a tidal stream energy system 3.17.1 GEM system configuration 3.17.2 Turbine and diffuser experimental tests (small-scale models) 3.17.2.1 General definitions 3.17.2.2 Model set-up 3.17.2.3 Tests on single turbine 3.17.3 Tests on full model in small scale 3.17.3.1 GEM tethered model set-up 3.17.3.2 Characterization of the submerged tethered system 3.17.3.3 Tether force and trim 3.17.4 Full-scale prototype tests 3.17.4.1 Test plant configuration References 4 Thermal and salinity gradient systems 4.1 Energy resources 4.1.1 Oceanic thermal gradients 4.1.1.1 Optimal characteristics 4.1.1.2 Estimation of energy potential 4.1.2 Salinity gradients 4.1.2.1 Optimal characteristics 4.1.2.2 Energy potential 4.2 Ocean thermal energy conversion (OTEC) plants 4.2.1 Open-cycle plants 4.2.2 Closed-cycle plants 4.2.3 Hybrid-cycle plants 4.2.4 Feed-pump removal technique 4.2.5 OTEC and solar pond 4.2.6 OTEC systems characteristics 4.2.7 Environmental impact 4.2.8 Economic aspects 4.3 Salinity gradient energy (SGE) plants 4.3.1 Pressure-retarded osmosis membrane (PRO) plants 4.3.2 Reverse electrodialysis (RED) plants 4.3.3 Electric Double-Layer Capacitors plants 4.3.4 Faradaic pseudo-capacitor plants 4.3.5 SGE systems characteristics 4.3.6 Environmental impact 4.3.7 Economic aspects Acknowledgments List of acronyms References 5 Offshore wind energy 5.1 Offshore wind characterisation 5.1.1 The random nature of wind 5.1.2 Long-term offshore wind speed characteristics 5.1.3 Turbulence 5.1.4 Wake flow effects 5.1.5 Other offshore-specific conditions 5.2 Wind turbine technology development: a historical perspective 5.3 Basic principles of wind turbine operation 5.3.1 Energy conversion and concentration 5.3.2 One-dimensional momentum and Betz 5.3.3 1D momentum with rotational wake 5.3.4 Basic aerofoil principles 5.3.5 BEM theory 5.3.6 Basic corrections to BEM 5.3.6.1 Tip loss correction 5.3.6.2 High-induction factor correction 5.3.6.3 Corrections for skewed wake effects under yawed rotor conditions 5.3.6.4 Corrections for dynamic inflow and dynamic stall 5.3.6.5 Corrections for 3D stall delay 5.3.6.6 Summary of BEM correction terms 5.4 Offshore wind turbine control systems 5.4.1 Control system fundamentals 5.4.2 Steady-state control 5.4.3 Dynamic control 5.4.4 Advanced control for load suppression 5.4.4.1 Load measurements as input for advanced control 5.4.4.2 Wind measurements as input for advanced control 5.4.4.3 Synthetic damping of wave-induced structural excitation 5.5 The future of offshore wind turbine technology Acknowledgements References 6 Marine solar energy 6.1 Solar cell technology 6.1.1 Semiconductor properties and growth 6.1.2 Semiconductor properties: the P – N junction 6.1.3 Crystalline solar cells 6.1.4 Thin film solar cells 6.2 Solar systems 6.2.1 Solar panels 6.3 Floating solar systems 6.3.1 Motivation 6.3.2 Components of a floating system 6.3.3 Chronology 6.3.4 Advantages and disadvantages 6.3.5 Systems at sea: motivation and special challenges 6.3.6 Systems at sea: current situation 6.3.6.1 The Solaqua Project (Malta) 6.3.6.2 Swimsol GmbH (Austria) 6.3.6.3 The Offshore Passive Photovoltaic Project (Malta) 6.3.6.4 Solar-at-Sea (The Netherlands) 6.3.7 Offshore solar: the future References 7 Offshore support structure design 7.1 Offshore support structures 7.1.1 Bottom-fixed support structures 7.1.1.1 Gravity-based structures 7.1.1.2 Monopiles, jackets, and tripiles 7.1.2 Floating support structures 7.1.2.1 Spar platforms 7.1.2.2 Semisubmersible platforms and barges 7.1.2.3 Tension leg platforms 7.1.2.4 Mooring systems 7.2 Support structure design 7.2.1 Initial design 7.2.1.1 Scaling of wind or current turbines 7.2.1.2 Scaling of wave energy converters 7.2.2 Loads and load effects 7.2.2.1 Permanent loads 7.2.2.2 Variable loads 7.2.3 Short-term and long-term design analysis 7.2.3.1 Short-term analysis 7.2.3.2 Long-term analysis 7.2.4 Design standards, guidelines, and other considerations 7.2.4.1 ORE design standards 7.2.4.2 Other design considerations References 8 Electrical power transmission and grid integration 8.1 Introduction 8.2 Implications of the grid-side converter topology on the grid integration of MECs 8.3 Impact of MECs' integration into power distribution systems 8.3.1 Power quality issues in marine energy installations Voltage variations Voltage fluctuations (flicker) Unbalance Waveform distortion Frequency variation Reactive power 8.3.2 System impact of marine energy installations 8.3.3 Case study 8.4 Impact of MECs' integration into power transmission systems 8.4.1 Additional ancillary services that can be provided by marine energy installations Harmonic compensation Low-voltage ride through Black start Power oscillation damping 8.4.2 Transmission technologies HVAC versus HVDC technologies Stability in DC power systems 8.4.3 Case study 8.4.4 Hybrid HVAC/DC systems and expansion planning References 9 Offshore energy storage 9.1 Underwater compressed air energy storage 9.1.1 How much exergy is stored per unit volume of air containment 9.1.2 Corrections for air density and non-ideal gas behaviour 9.1.3 Structural capacity and its relevance to energy storage 9.1.4 Exergy versus structural capacity for underwater containments 9.1.5 The air ducts 9.1.6 Using thermal storage in conjunction with air storage 9.1.7 An example system design 9.1.8 Sites available for UWCAES 9.2 Offshore pumped hydro 9.2.1 Exergy storage density for UWPH 9.2.2 Key distinctions between UWPH and UWCAES 9.2.3 The EC2SC ratio for UWPH 9.3 Buoyancy energy storage systems 9.4 Offshore thermal energy storage systems 9.5 Other concepts 9.6 Integrating offshore energy storage with generation References 10 Multipurpose platforms 10.1 Introduction 10.1.1 Context 10.1.2 Why multipurpose platforms? 10.1.2.1 Potential synergies 10.2 Multipurpose platform projects and concepts 10.2.1 EU projects 10.3 Design and analysis of multipurpose platforms 10.3.1 Multidisciplinary design methodology 10.3.2 Resource assessment: combined wind-wave resources 10.3.3 Modelling and analysis 10.4 Conclusions References 11 Installation, operation and maintenance of offshore renewables 11.1 Introduction 11.1.1 Impact of installation, operation and maintenance activities in offshore renewable systems 11.1.2 Functional decomposition of offshore renewable systems 11.1.3 Concepts of reliability and failure analysis 11.2 Life cycle activities for offshore energy systems 11.2.1 Installation phase 11.2.1.1 Subsea power cable installation 11.2.1.2 Cable-to-cable connection 11.2.1.3 Offshore substation installation 11.2.1.4 Cable-to-device connection 11.2.1.5 Foundations 11.2.1.6 Mooring systems 11.2.1.7 Offshore renewable energy devices 11.2.2 Operation and maintenance phase 11.2.2.1 Inspection and monitoring 11.2.2.2 On-site interventions 11.2.2.3 Onshore interventions 11.2.3 Decommissioning phase 11.2.4 Vessels and equipment 11.3 Planning the operations 11.3.1 Strategies for planning the operations 11.3.2 Weather windows 11.3.3 Estimation of the delay time 11.3.4 Offshore standards and technical recommendations for operations 11.4 Economic modelling of installation, operation and maintenance References 12 Challenges and future research 12.1 Challenge one – proving it 12.2 Challenge two – keeping it working 12.3 Challenge three – technical improvements 12.3.1 Servicing 12.3.2 Access 12.3.3 Data 12.3.4 Materials 12.4 Challenge four – environmental acceptability 12.5 Challenge five – social acceptability 12.6 Challenge six – making it work commercially 12.7 Challenge seven – getting the price down 12.8 Challenge eight – public support required 12.8.1 Financing arrays 12.8.2 Market pull 12.9 Challenge nine – market development 12.10 Challenge ten – making it happen References Index Back Cover