ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies

دانلود کتاب آینده با انرژی تجدیدپذیر: فناوری ها ، مدل سازی ، برنامه ها ، پایداری و سیاست ها

Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies

مشخصات کتاب

Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780128205396 
ناشر: Elsevier Science & Technology 
سال نشر: 2020 
تعداد صفحات: 648 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آینده با انرژی تجدیدپذیر: فناوری ها ، مدل سازی ، برنامه ها ، پایداری و سیاست ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Renewable-Energy-Driven Future
Copyright Page
Contents
List of Contributors
I. Technologies
	1 Solar energy technologies: principles and applications
		1.1 Introduction
		1.2 Photovoltaic technologies
			1.2.1 Solar photovoltaic principles
				1.2.1.1 Power of a solar cell
				1.2.1.2 Fill factor
				1.2.1.3 Conversion efficiency
			1.2.2 Recent advancements in solar photovoltaic technologies
				1.2.2.1 Perovskite solar cells
				1.2.2.2 Other emerging photovoltaic technologies
				1.2.2.3 Cadmium telluride
				1.2.2.4 Copper indium gallium selenide
				1.2.2.5 Dye-sensitized solar cells
				1.2.2.6 Quantum dot solar cells
			1.2.3 Applications of solar cells
		1.3 Solar thermal collectors
			1.3.1 Stationary collectors
			1.3.2 Tracking concentrating collectors
		1.4 Solar cooling technologies
			1.4.1 Solar photovoltaic powered cooling system
				1.4.1.1 Solar vapour compression cooling system
				1.4.1.2 Solar thermoelectric cooling system
				1.4.1.3 Solar ground source heat pump system
			1.4.2 Solar thermal powered cooling system
				1.4.2.1 Solar sorption cooling system
				1.4.2.2 Solar desiccant cooling system
				1.4.2.3 Solar ejector cooling system
		1.5 Solar pond
		1.6 Solar cooking
		1.7 Solar desalination
			1.7.1 Indirect type desalination
				1.7.1.1 Humidification and dehumidification desalination
				1.7.1.2 Multistage flash desalination
				1.7.1.3 Vapour compression desalination
				1.7.1.4 Osmotic desalination driven by solar energy
			1.7.2 Direct type desalination
		Nomenclature
		References
	2 Bioenergy for better sustainability: technologies, challenges and prospect
		2.1 Introduction
		2.2 Technologies
			2.2.1 Microorganisms
			2.2.2 Feedstocks
			2.2.3 Fermentation technologies
		2.3 Challenges
		2.4 Future prospects
		References
	3 Organic Rankine cycle driven by geothermal heat source: life cycle techno-economic–environmental analysis
		3.1 Introduction
		3.2 Organic Rankine cycle system description and working fluid selection
		3.3 Methods and models
			3.3.1 Thermodynamic and technical analysis
			3.3.2 Heat exchanger model
			3.3.3 Economic and exergoeconomc analysis
			3.3.4 Life-cycle environmental analysis
				3.3.4.1 Life-cycle boundary
				3.3.4.2 Carbon footprint analysis
				3.3.4.3 Data sources
			3.3.5 Multicriteria integrated assessment and decision-making
		3.4 Thermodynamic and economic results
			3.4.1 Effects of design parameters on thermodynamic performance
			3.4.2 Effects of design parameters on economic performance
			3.4.3 Effects of design parameters on exergoeconomic performance
			3.4.4 Sensitivity analysis on the economic performance and inlet temperature of geothermal source
		3.5 Life-cycle and carbon footprint analysis of the organic Rankine cycle
			3.5.1 Environmental evaluation of life cycle
			3.5.2 Environmental evaluation of components
			3.5.3 Environmental evaluation of working fluids
			3.5.4 Analysis of emission reductions
			3.5.5 Sensitivity analysis
		3.6 Comparison between different layouts of organic Rankine cycle systems
		3.7 Results of multifactor evaluation
		3.8 Conclusions
		Appendix A
		References
	4 Renewable energy based trigeneration systems—technologies, challenges and opportunities
		4.1 Introduction
		4.2 Cogeneration and trigeneration
			4.2.1 Trigeneration systems classification
				4.2.1.1 Classification by size
				4.2.1.2 Classification by applications
				4.2.1.3 Classification by type of prime-mover
				4.2.1.4 Classification by sequence of energy
			4.2.2 Microgeneration
			4.2.3 Polygeneration
			4.2.4 Distributed/decentralized energy system
			4.2.5 District energy systems and polygeneration microgrids
			4.2.6 Combined cooling, heating and power operation strategies (modes)
			4.2.7 Energy tools/software used in energy systems
		4.3 Heat-recovery units
			4.3.1 Types of heat-recovery units
				4.3.1.1 Unfired units
				4.3.1.2 Fired units
			4.3.2 Heat pumps
		4.4 Cooling technologies
			4.4.1 Types of cooling technologies
				4.4.1.1 Sorption technology
				4.4.1.2 Desiccant technology
			4.4.2 Cooling applications in trigeneration systems
		4.5 Thermal energy storage
			4.5.1 Storage concept
				4.5.1.1 Active system
				4.5.1.2 Passive system
			4.5.2 Storage mechanisms/types of thermal energy storage
				4.5.2.1 Sensible heat storage
				4.5.2.2 Latent heat storage
				4.5.2.3 Chemical storage
			4.5.3 Combined heat storage
			4.5.4 Packed bed systems
			4.5.5 Solar thermal energy storage
		4.6 Renewable energy
			4.6.1 Hybrid energy systems
				4.6.1.1 Zero energy building
			4.6.2 Wind energy
				4.6.2.1 Wind power meteorology and wind modelling
				4.6.2.2 Turbine technology
				4.6.2.3 Wind hybrid systems and applications
					4.6.2.3.1 Wind–diesel system
					4.6.2.3.2 Wind–photovoltaic-hydrogen system
					4.6.2.3.3 Seawater desalination
				4.6.2.4 Wind power development
			4.6.3 Geothermal energy technologies
			4.6.4 Biomass energy
				4.6.4.1 Biomass energy technologies
				4.6.4.2 Biofuels
					4.6.4.2.1 Straight vegetable oils
					4.6.4.2.2 Biodiesel
					4.6.4.2.3 Bioethanol
					4.6.4.2.4 Biomethanol
					4.6.4.2.5 Biogas
				4.6.4.3 Biomass-fuelled combined cooling, heating and power systems
			4.6.5 Solar energy
				4.6.5.1 Solar collectors
					4.6.5.1.1 Nonconcentrating solar collectors
					4.6.5.1.2 Concentrating solar collectors
				4.6.5.2 Solar photovoltaic systems
				4.6.5.3 Hybrid photovoltaic-thermal systems
				4.6.5.4 Solar thermal applications
				4.6.5.5 Solar-renewable hybrids
					4.6.5.5.1 High-renewable hybrids
						Concetrating solar plant-biomass hybrids
						Concetrating solar plant-geothermal hybrids
						Concetrating solar plant-wind hybrids
					4.6.5.5.2 Medium-renewable hybrids
					4.6.5.5.3 Low renewable hybrids
						Solar-Brayton cycles
						Solar-aided coal power plants (Rankine cycle)
						Integrated solar combined cycles
			4.6.6 Other renewable sources
		4.7 Research trends in renewable energy integrated trigeneration technologies
		4.8 Challenges and opportunities in renewable energy-based trigeneration systems
			4.8.1 Challenges and barriers
			4.8.2 Opportunities and prospects
		4.9 Conclusions
		Abbreviations
		References
		Further reading
	5 Integrated power transmission and distribution systems
		5.1 Introduction
		5.2 Mathematical model
			5.2.1 First-stage unit commitment model
			5.2.2 Second-stage economic dispatch model
			5.2.3 Distributed energy resource management problem
			5.2.4 Tighter formulations
		5.3 Numerical results
			5.3.1 Isolated unit commitment problem
			5.3.2 Isolated distributed energy resource management problem
			5.3.3 Integrated transmission and distribution systems
				5.3.3.1 Sensitivity analyses: types of the integrated distribution systems
			5.3.4 IEEE 118-bus network results
		5.4 Conclusions
		References
II. Modelling
	6 Integrated inexact optimization for hybrid renewable energy systems
		6.1 Introduction
		6.2 Deterministic optimization techniques
			6.2.1 Classical techniques
			6.2.2 Metaheuristic algorithm
			6.2.3 Commercial software
		6.3 Inexact mathematical programming methods
			6.3.1 Stochastic mathematical programming
				6.3.1.1 Chance-constrained programming
				6.3.1.2 Stochastic programming with recourse
			6.3.2 Robust optimization
			6.3.3 Fuzzy mathematical programming
				6.3.3.1 Fuzzy flexible programming
				6.3.3.2 Fuzzy possibilistic programming
				6.3.3.3 Fuzzy robust programming
			6.3.4 Interval mathematical programming
			6.3.5 Hybrid inexact mathematical programming
		6.4 Integrated inexact optimization framework
		6.5 Conclusions
		References
	7 Large-scale integration of variable renewable resources
		7.1 Introduction
		7.2 Climate change and greenhouse gas emissions trends
		7.3 Global renewable power deployment
		7.4 High penetration of renewable sources in the power sector
			7.4.1 Optimal development of nondispatchable resources (solar and wind)
			7.4.2 Surplus and backup powers—curtailment
			7.4.3 Energy storage
				7.4.3.1 Pumped-storage hydropower
				7.4.3.2 Batteries
				7.4.3.3 Hydrogen
		7.5 Main strategies for the 2030 European energy transition
			7.5.1 Coal phase-out
			7.5.2 Decrease in renewable energy costs
				7.5.2.1 Evolution of levelized cost of energy on renewable sources
			7.5.3 International interconnections
			7.5.4 Digitalization and smart grids
			7.5.5 Demand response
		Acknowledgements
		References
	8 The climate and economic benefits of developing renewable energy in China
		8.1 Introduction
		8.2 Methods and scenarios
			8.2.1 Integrated model of energy, environment and economy for sustainable development/computable general equilibrium model
			8.2.2 Economic assessment of renewable energy
			8.2.3 Investment in nonfossil power generation
			8.2.4 Data sources
			8.2.5 Scenarios
				8.2.5.1 Reference scenario
				8.2.5.2 REmax scenario
		8.3 Results
			8.3.1 Macroeconomic trends towards 2050
			8.3.2 Impacts on the energy system
				8.3.2.1 Primary energy
				8.3.2.2 Power structure
			8.3.3 Benefits of developing renewable energy in carbon and air pollutant emissions reduction
			8.3.4 Economic impacts of renewable energy development
				8.3.4.1 Investment
				8.3.4.2 Impacts on industrial output, value-added and employment
		8.4 Discussion
			8.4.1 Policy implications
			8.4.2 Comparison with other studies
			8.4.3 Sensitivity analysis
			8.4.4 Limitations and next step
		8.5 Conclusions
		References
III. Applications
	9 The utilization of renewable energy for low-carbon buildings
		9.1 Building and energy and environmental challenges
		9.2 Net-zero energy building and low-carbon building
		9.3 Building life-cycle systems and greenhouse gas emissions
		9.4 Renewable energy technologies for low-carbon buildings
			9.4.1 Building material extraction and transportation
			9.4.2 Building construction
			9.4.3 Building operation
				9.4.3.1 Solar photovoltaics
				9.4.3.2 Solar thermal
				9.4.3.3 Photovoltaic–thermal
		9.5 Path forward for advancing low-carbon buildings
		References
	10 Towards a renewable-energy-driven district heating system: key technology, system design and integrated planning
		10.1 Introduction
		10.2 Key technologies and system design for renewable-energy-driven district heating
			10.2.1 Indicators and design principle for enhancement of district heating systems
				10.2.1.1 Energy efficiency and exergy efficiency
				10.2.1.2 Cascade and upgrade use of heat energy
			10.2.2 System design and key technologies of renewable-energy-driven district heating system
				10.2.2.1 System composition of a renewable-energy-driven district heating system
				10.2.2.2 Key technologies for a renewable-energy-driven district heating system
					10.2.2.2.1 Energy conversion
					10.2.2.2.2 Heat distribution
					10.2.2.2.3 Heat storage
			10.2.3 Optimization for a renewable-energy-driven district heating system
				10.2.3.1 Supply side optimization
				10.2.3.2 Demand-side management
					10.2.3.2.1 Demand response
					10.2.3.2.2 Building mix
					10.2.3.2.3 Land use change
		10.3 Integrated urban planning for renewable-energy-based district heating
			10.3.1 Urban and industrial symbiosis
			10.3.2 Modelling the strategic urban renewal for promoting district heating
		10.4 Conclusions
		Acknowledgements
		References
	11 Renewable energy-driven desalination for more water and less carbon
		11.1 Introduction
		11.2 Desalination technology
			11.2.1 Thermal desalination techniques
				11.2.1.1 Multieffect distillation
				11.2.1.2 Multistage flash desalination
				11.2.1.3 Vapour compression desalination
				11.2.1.4 Adsorption desalination
			11.2.2 Membrane desalination techniques
				11.2.2.1 Reverse osmosis
				11.2.2.2 Electrodialysis
				11.2.2.3 Forward osmosis
			11.2.3 Desalination installed capacity and trends
				11.2.3.1 Global status of desalination
				11.2.3.2 Research trends in desalination
		11.3 Energy and desalination
			11.3.1 Renewable energy resources for desalination
		11.4 Renewable energy integrated desalination: technical, economic and social development aspects
			11.4.1 Solar desalination
				11.4.1.1 Solar photovoltaic desalination
				11.4.1.2 Solar thermal desalination
			11.4.2 Nuclear energy-driven desalination
			11.4.3 Wind energy-driven desalination
			11.4.4 Geothermal energy-driven desalination
			11.4.5 Ocean/wave energy-driven desalination
		11.5 Barriers, issues and opportunities in desalination technology development
			11.5.1 Brine production
			11.5.2 Desalination cost and CO2 emissions
		11.6 Outlook
		Abbreviations
		References
IV. Sustainability
	12 The environmental performance of hydrogen production pathways based on renewable sources
		12.1 Introduction
		12.2 H2 production pathways and applications
			12.2.1 Water electrolysis
			12.2.2 Biomass to H2
				12.2.2.1 Thermal gasification
				12.2.2.2 Supercritical water gasification of biomass
				12.2.2.3 Bio-oil reforming
		12.3 Method
			12.3.1 Life cycle assessment
			12.3.2 Goal and scope definition
			12.3.3 Inventory analysis of wind-based water electrolysis
			12.3.4 Inventory analysis of solar-based water electrolysis
			12.3.5 Inventory analysis of the thermal gasification of biomass
				12.3.5.1 Feedstock production
				12.3.5.2 Biomass transportation
				12.3.5.3 Gasification process
			12.3.6 Inventory analysis of bio-oil reforming
			12.3.7 Inventory analysis of supercritical water gasification of algae
				12.3.7.1 Algae cultivation
				12.3.7.2 Process conversion
			12.3.8 Sensitivity and uncertainty analyses
		12.4 Greenhouse gas footprints of H2 production pathways
			12.4.1 Greenhouse gas footprint of water electrolysis
			12.4.2 Greenhouse gas footprint of gasification
			12.4.3 Greenhouse gas footprint of bio-oil reforming
			12.4.4 Greenhouse gas footprint of supercritical water gasification
			12.4.5 Comparative assessment incorporating sensitivity and uncertainty analyses
		12.5 Conclusions
		Acknowledgements
		References
	13 Integrated economic–environmental–social assessment of straw for bioenergy production
		13.1 Introduction
		13.2 Methods
			13.2.1 Estimation of straw available for energy production
				13.2.1.1 Influential factors of grain yield
				13.2.1.2 Energy potential of straw
			13.2.2 Cost and profit of straw utilization for energy production
			13.2.3 Environmental impacts of straw utilization for energy production
			13.2.4 Selection of evaluation indicators
		13.3 Case study
			13.3.1 Estimation of the quantity of straw
				13.3.1.1 Regional grain yield
				13.3.1.2 Conversion coefficients of straw
			13.3.2 Parameters of energy conversion technologies
		13.4 Results and discussion
			13.4.1 Energy potential of straw
			13.4.2 Energy, environmental and socioeconomic benefits of straw utilization
			13.4.3 Analysis of major factors affecting the results
				13.4.3.1 Changes in collection radius
				13.4.3.2 Changes in purchase price of straw
				13.4.3.3 Changes in utilization proportion of straw
		13.5 Discussion
		13.6 Conclusions
		Subscripts and superscripts
		References
	14 Sustainability assessment of renewable energy-based hydrogen and ammonia pathways
		14.1 Introduction
			14.1.1 Importance of energy storage
			14.1.2 Chemical energy storage
				14.1.2.1 Renewable hydrogen (H2)
				14.1.2.2 Renewable ammonia (NH3)
		14.2 Hydrogen and ammonia production pathways
			14.2.1 Hydrogen production
				14.2.1.1 Steam methane reforming
				14.2.1.2 Wind power-based electrolysis
				14.2.1.3 Hydropower-based electrolysis
				14.2.1.4 Photoelectrochemical water splitting
			14.2.2 Ammonia production
				14.2.2.1 Steam methane reforming and Haber–Bosch ammonia synthesis method
				14.2.2.2 Wind power-based electrolysis and Haber–Bosch ammonia synthesis process
				14.2.2.3 Hydropower-based electrolysis and the Haber–Bosch ammonia synthesis
				14.2.2.4 Photoelectrochemical water splitting and electrochemical ammonia synthesis
		14.3 Methodology
			14.3.1 Efficiency index
				14.3.1.1 Energy efficiency
				14.3.1.2 Exergy efficiency
			14.3.2 Cost
			14.3.3 Environmental impact
			14.3.4 Weighting scheme
		14.4 Results and discussion
		14.5 Conclusions
		Acknowledgements
		Nomenclature
		Abbreviations
		Greek letters
		Subscripts
		References
	15 An extended fuzzy divergence measure-based technique for order preference by similarity to ideal solution method for ren...
		15.1 Introduction
		15.2 Prerequisites
		15.3 Divergence measures for fuzzy sets
			15.3.1 An example for developed fuzzy divergence measures
		15.4 Divergence measures-based fuzzy TOPSIS method
			15.4.1 Case study of renewable energy investment
		15.5 Conclusions
		Appendix: Proof of the properties
		References
	16 Multicriteria decision making for the selection of the best renewable energy scenario based on fuzzy inference system
		16.1 Introduction
		16.2 Method
		16.3 Application
		16.4 Conclusions
		References
V. Policy
	17 How much is possible? An integrative study of intermittent and renewables sources deployment. A case study in Brazil
		17.1 Introduction – understanding of the question
		17.2 Irresistible expansion
			17.2.1 Wind
			17.2.2 Solar
		17.3 Undesirable effects of the intermittent renewable resources expansion
			17.3.1 Complexity
			17.3.2 The operation problem with the increasing insertion of intermittent renewable resources
			17.3.3 Economic effects
			17.3.4 Externalities and the merit order effect
		17.4 Rebound effect – social acceptance of intermittent renewable sources – the opponents
		17.5 Conclusions
		17.6 Acknowledgments
		References
	18 Renewable energy technologies: barriers and policy implications
		18.1 Introduction
		18.2 Literature on barriers to renewable energy
		18.3 Barriers identification and policy frameworks
			18.3.1 Economic barriers
			18.3.2 Technical barriers
			18.3.3 Awareness and information barriers
			18.3.4 Financial barriers
			18.3.5 Regulatory and policy barriers
			18.3.6 Institutional and administrative barriers
			18.3.7 Social and environmental barriers
			18.3.8 End-use/demand-side barriers
		18.4 Barriers identification framework
			18.4.1 Selection of renewable energy technologies for the study of barriers
			18.4.2 Identification of barriers for the study
		18.5 Measures to overcome barriers
			18.5.1 Renewable energy targets
		18.5.2 Renewable energy promotion measures
			18.5.2.1 Support mechanisms
				18.5.2.1.1 A feed-in tariff
				18.5.2.1.2 Auctions or tendering schemes
				18.5.2.1.3 Renewable energy certificates
				18.5.2.1.4 Renewable portfolio standard
		18.5.3 Net metering/net billing
			18.5.3.1 Fiscal incentives
			18.5.3.2 Public financing of renewable energy
		18.6 Current challenges
		References
	19 Policies for a sustainable energy future: how do renewable energy subsidies work and how can they be improved?
		19.1 Introduction
		19.2 Renewable energy development and renewable energy subsidies
			19.2.1 The development of renewable energy varies across countries
			19.2.2 A brief review of the renewable energy subsidy policies in United States
			19.2.3 A brief review of the renewable energy subsidy policies in European Union
				19.2.3.1 Germany
				19.2.3.2 Spain
				19.2.3.3 Denmark
			19.2.4 A brief review of renewable energy subsidies in China
		19.3 The mechanism of how renewable energy subsidy works
			19.3.1 A model of renewable energy generation
				19.3.1.1 Government
				19.3.1.2 Electricity generation enterprises
			19.3.2 Discussion and policy implications
		19.4 Conclusions
		References
	20 Renewable energy-based power generation and the contribution to economic growth: the case of Portugal
		20.1 Introduction
		20.2 Methodology
			20.2.1 Econometric model and data
			20.2.2 Testing for unit roots and detecting outliers
			20.2.3 Testing for cointegration and estimating parameters
		20.3 Empirical results
		20.4 Conclusions
		Appendix 1
		References
Index
Back Cover




نظرات کاربران