دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Maged Marghany
سری:
ISBN (شابک) : 0367896702, 9780367896706
ناشر: CRC Pr I Llc
سال نشر: 2022
تعداد صفحات: 300
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Remote Sensing and Image Processing in Mineralogy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنجش از دور و پردازش تصویر در کانیشناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سنجش از دور و پردازش تصویر در کانیشناسی ابزارهای حیاتی مورد نیاز برای درک آخرین فناوری پیرامون تصویربرداری سنجش از دور کانیشناسی، اکتشافات نفت و گاز را نشان میدهد. این به ویژه بر رادار چند طیفی، ابرطیفی و مایکروویو، به عنوان اصلی ترین منابع برای درک، تجزیه و تحلیل و کاربرد مفاهیم در زمینه کانی شناسی تمرکز دارد. پر کردن شکاف بین نظریه کوانتومی فیزیک مدرن و کاربردهای پردازش تصویر از تصویربرداری سنجش از دور از ویژگیهای زمینشناسی، کانیشناسی، اکتشافات نفت و گاز، این مرجع با جزئیات فنی مرتبط با پتانسیل رادار دیافراگم چندطیفی، ابرطیفی و مصنوعی (SAR) پر شده است. این کتاب همچنین شامل روشهای کلیدی مورد نیاز برای استخراج اطلاعات ارزش افزوده ضروری است، مانند خطوط معدنی، معادن طلا و مس. این کتاب همچنین گمانهزنیهای جدیدی از شناساییهای امضای کانیهای طیفی کوانتومی را نشان میدهد که بهعنوان طیف کانی کوانتیزهشده Marghany یا الگوریتمهای طیف کوانتومی Marghany برای شناسایی مواد معدنی (MQSA) نامگذاری شدهاند.
با شبیهسازیهای عملی چهاربعدی گودال باز تکمیل میشود. شناسایی و پایش معدن با استفاده از تکنیک تداخل سنجی رادار هولوگرام، این کتاب منبع جدید و موثری از فناوری و کاربردها را برای مهندسان معدن شناسی و نفت امروزی به ارمغان می آورد.
ویژگی های کلیدی
- به توسعه الگوریتم های جدید برای بازیابی استخراج معدن کمک می
کند. مناطق بالقوه در دادههای سنجش از دور.
- مشکلات خاص پیرامون کتابخانههای امضای طیفی کانیهای مختلف
را در دادههای چند طیفی و فراطیفی حل میکند.
- شامل بیش از 200 معادله است که نحوه دنبال کردن مثالهای کتاب
را نشان میدهد.
Remote Sensing and Image Processing in Mineralogy reveals the critical tools required to comprehend the latest technology surrounding the remote sensing imaging of mineralogy, oil and gas explorations. It particularly focusses on multispectral, hyperspectral and microwave radar, as the foremost sources to understand, analyze and apply concepts in the field of mineralogy. Filling the gap between modern physics quantum theory and image processing applications of remote sensing imaging of geological features, mineralogy, oil and gas explorations, this reference is packed with technical details associated with the potentiality of multispectral, hyperspectral and synthetic aperture radar (SAR). The book also includes key methods needed to extract the value-added information necessary, such as lineaments, gold and copper minings. This book also reveals novel speculation of quantum spectral mineral signature identifications, named as quantized Marghany's mineral spectral or Marghany Quantum Spectral Algorithms for Mineral identifications (MQSA).
Rounding out with practical simulations of 4-D open-pit mining identification and monitoring using the hologram radar interferometry technique, this book brings an effective new source of technology and applications for today's minerology and petroleum engineers.
Key Features
- Helps develop new algorithms for retrieving mineral mining
potential zones in remote sensing data.
- Solves specific problems surrounding the spectral signature
libraries of different minerals in multispectral and
hyperspectral data.
- Includes over 200 equations that illustrate how to follow
examples in the book.
Cover Title Page Copyright Page Dedication Preface Table of Contents 1. Principles of Mineralogy, Oil and Gas 1.1 What is a Mineral? 1.2 What is the Relationship between Atoms, Elements, Minerals and Rocks? 1.3 Atom Structure 1.4 Minerals in Periodic Table 1.5 Chemical Bonding 1.6 Valence and Charge 1.7 Ionic Bonding 1.8 Covalent Bonding 1.9 Natural Crystallization of Minerals 1.9.1 Isometric 1.9.2 Hexagonal 1.9.3 Tetragonal 1.9.4 Orthorhombic 1.9.5 Monoclinic 1.9.6 Triclinic 1.9.7 Trigonal or Rhombohedral 1.10 Occurrence and Formation 1.11 How are Minerals Categorized? 1.11.1 Silicate Minerals 1.11.2 The Dark Ferromagnesian Silicates 1.11.3 Pyroxene Family 1.11.4 Amphibole Minerals 1.11.5 Sheet Silicates 1.11.6 Framework Silicates 1.12 Non-Silicate Minerals 1.12.1 Carbonate 1.12.2 Oxides 1.12.3 Halides 1.12.4 Sulfides 1.12.5 Phosphate Minerals 1.12.6 Native Element Minerals 1.13 Oil and Gas Formation References 2. Quantization of Minerals and their Interactions with Remote Sensing Photons 2.1 Quantization in the Atom 2.1.1 Principal Quantum Number 2.1.2 Angular Momentum Quantum 2.1.3 Magnetic Quantum Number 2.1.4 Spin Quantum Number 2.2 Quantum Mechanics of Bonding 2.3 Quantum Mechanics of Mineral Atomics 2.4 Energy Variations Based on Schrödinger Wavefunction 2.5 What is Quantum Influences? 2.6 Quantization of Minerals from Point View of Wavefunction 2.7 Antiferromagnetic Spin-frustrated Layers of Minerals 2.8 General Quantization of Mineral Remote Sensing Imagines 2.8.1 Plank Quanta 2.8.2 Requantization of Photoelectric Effect 2.8.3 The Uncertainty Principle 2.8.4 Photovoltaic Effect 2.8.5 De Broglie’s Wavelength 2.9 Quantization of Blackbody Radiation 2.10 Quantization of Spectral Signature 2.11 How can We Establish a New Definition of Remote Sensing for Mineral Identification? References 3. Quantum Computing of Image Processing 3.1 What is Meant by Quantum Computing? 3.2 What is Meant by Quantization? 3.3 What are Quantum Computers and How do they Work? 3.3.1 Qubits and Superposition 3.3.2 Quantum Registers 3.3.3 Quantum Gates 3.3.3.1 NOT Gate 3.3.3.2 Controlled-NOT Gate 3.3.3.3 Hadamard Gate 3.3.4 Entanglement 3.4 Quantum Image Processing 3.5 Flexible Representation for Quantum Images 3.6 Fast Geometric Transformations on FRQI Quantum Images 3.7 Efficient Colour Transformations on FRQI Quantum Image 3.8 Multi-Channel Representation for Quantum Images 3.9 Novel Enhanced Quantum Image Representation (NEQR) References 4. Quantum Spectral Libraries of Minerals in Optical Remote Sensing Data 4.1 How do Spectral Libraries Build Up? 4.2 Jablonski Energy Diagram 4.3 Infrared Absorption Spectroscopy 4.4 Spectral Regions Relevant to Mineralogy 4.5 Entanglement by Absorption 4.6 How Does Entanglement Form Spectral Libraries? 4.7 How Does Quantum Teleportation Establish the Spectral Libraries? 4.8 Modeling of Quantum Mineral Spectral Libraries 4.9 Image Storage 4.10 Tested Remote Sensing Data 4.11 Example of Reflectance Spectra References 5. Quantum Multispectral and Hyperspectral Remote Sensing Imaging of Alteration Minerals 5.1 What is an Alteration? 5.1.1 Potassic Alteration 5.1.2 Propylitic Alteration 5.1.3 Phyllic (Sericitic) Alteration 5.1.4 Argillic Alteration 5.1.5 Silicification 5.1.6 Carbonatization and Greisenization 5.2 Multispectral and Hyperspectral Remote Sensing Sensors 5.3 Mineral Exploration from Space 5.3.1 Multispectral Satellite Sensors 5.3.2 Hyperspectral Satellite Sensors 5.4 Why Does The Spectral Analyst Tool Work Properly in Some Cases and Not At All in Others? 5.5 Quantization of Multispectral and Hyperspectral Data 5.6 Spectral Reflectance Quantum Image Formation (SRQIF) 5.7 Marghany Quantum Spectral Algorithms for Mineral Identifications (MQSA) 5.8 Selected Investigation Area for MQSA Application 5.9 MQSA Application of Different Minerals in Landsat and ASTER Images 5.10 Why Marghany Quantum Spectral Algorithms (MQSA) Identify Accurate Quantum Mineral Images? References 6. Evolving Quantum Image Processing Tool for Lineament Automatic Detection in Optical Remote Sensing Satellite Data 6.1 What is Meant by Lineament? 6.2 What is the Magic of Lineament? 6.3 What are the Sorts of Lineaments? 6.4 Satellite Remote Sensing and Image Processing for Lineament Features’ Detection 6.5 How do Multispectral Remote Sensing Data Identify the Lineaments? 6.6 Problems for Geological Features’ Extraction from Remote Sensing Data 6.7 Can Digital Elevation Model be Utilized in Lineament Delineation? 6.8 What is the Main Question? 6.9 The Fuzzy B-splines Algorithm for Digital Elevation Model Reconstruction 6.10 Entanglement of Fuzzy Quantum for DEM Reconstruction 6.11 Quantum Edge Detection Algorithm for Lineament Mapping References 7. Quantum Support Vector Machine in Retrieving Clay Mineral Saturation in Multispectral Sentinel-2 Satellite Data 7.1 Salinity, Soil and Geological Minerals 7.2 Mineral Soil Classifications 7.3 Remote Sensing of Mineral Soils 7.4 Can Marshlands be Indicator for Mineral Occurrences? 7.5 How to Compute Cation Exchange Capacity in Laboratory? 7.6 Sentinel-2 Satellite Data 7.7 How to Retrieve Clay Potential Percentage in Remote Sensing Data? 7.8 Quantized Marghany Clay Saturation Algorithm in Al-Hawizeh Marsh 7.9 Support Vector Machines 7.10 Quantum Support Vector Machines 7.11 Why Does QSVM Entangle Quantized Marghany’s Clay Saturation Algorithm? References 8. Automatic Detection of Oil Seeps in Synthetic Aperture Radar Using Quantum Immune Fast Spectral Clustering 8.1 What are Oil Seeps? 8.2 Behaviour of Oil and Gas Jets and Plumes Below the Sea Water Surface 8.3 Onshore Seep Occurrences 8.4 Offshore Seep Occurrences 8.5 Sort of Seeps 8.6 How Does Remote Sensing Technology Identify Natural Oil and Gas Seeps? 8.7 Why Do Microwave Data Have Advantages on Top of Optical Data in Seep Monitoring? 8.8 Offshore Seep Imagine in SAR Data 8.9 What are the Physical Seep Parameters Identified in SAR Data? 8.10 SAR Polarization Signals 8.11 Quantum Fully-polarized SAR Image Processing 8.12 Quantum Immune Fast Spectral Clustering 8.13 Quantum Immune Operation 8.14 Spectral Embedding 8.15 Automatic Detection of Oil Seep in Full Polarimetric SAR 8.16 Applications of QIFSC to Other Satellite Polarimetric SAR Sensors 8.17 Why Can QIFSC Precisely Cluster Different Kinds of Oil Seep? References 9. Quantum Interferometry Radar for Oil and Gas Explorations 9.1 What is Reservoir Geomechanics? 9.2 What is the Role of Reservoir Geomechanics in Oil and Gas Explorations? 9.3 Physics of Interferometry 9.4 What is Synthetic Aperture Interferometry? 9.5 Interferograms 9.6 Phase Unwrapping 9.7 How to Understand SAR Interferograms? 9.8 Quantum of Differential-InSAR (QD-InSAR) 9.9 Quantum Hopfield Algorithm for DInSAR Phase Unwrapping 9.10 Application of Quantum DInSAR Hopfield Algorithm in Land Deformation Owing to Oil and Gas Explorations References 10. Quantum Machine Learning Algorithm for Iron, Gold, and Copper Detection in Optical Remote Sensing Data 10.1 How Copper and Gold Form in the Earth? 10.2 How Copper and Gold are Mined? 10.3 What are the Characteristics of Copper and Gold? 10.4 Remote Sensing for Copper and Gold Identifications 10.5 Conventional Image Processing Techniques for Gold, Iron, and Copper Explorations 10.5.1 Preprocessing 10.5.2 Post Image Processing 10.5.2.1 False Colour Composite 10.5.2.2 Band Ratio 10.5.2.3 Principal Component Analysis (PCA) 10.5.2.4 Noise Fraction (MNF) 10.5.2.5 Spectral Unmixing in n-dimensional Spectral Feature Space 10.6 Quantum Machine Learning 10.7 Classifier Architecture 10.8 Classifier Training as a Supervised Learning Task 10.9 Training Score and Classifier Bias 10.10 Gold Mining Simulation Using Quantum Machine Learning 10.11 Quantum Artificial Neural Network (QANN) for Gold Exploration 10.12 QANN for Copper Mining Potential Zone 10.13 Why Quantum Machine Learning can be Used for Mineral Exploration? References 11. Four-Dimensional Hologram Interferometry for Automatic Detection of Copper Mineralization Using Terrasar-X Satellite Data 11.1 What is the Real Age of Copper? 11.2 Occurrences of Copper 11.3 Conventional Methods for Copper Extraction 11.4 What is the Major Challenge with Optical Remote Sensing and Microwave Radar Data? 11.5 Underground Mines and Open Pits Identification and Monitoring by InSAR 11.6 InSAR Processing Challenges 11.7 Why Do We Still Need to Identify Well-known Open-Pit Mining? 11.8 What are the Advantages of TanDEM Data? 11.9 What is Meant by Four-Dimensional and Why? 11.10 Does N-dimensional Exist? 11.11 What is Hologram Interferometry? 11.12 Marghany’s 4-D Hologram Interferometry Theory for Copper Mineralization 11.13 Marghany’ 4-D Phase Unwrapping Algorithm 11.14 Particle Swarm Optimization Algorithm 11.14.1 Optimization of 4-D Phase Unwrapping 11.14.2 Optimization of Open-pit Mining Geometry Deformation 11.15 Hamming Graph for 4-D Formation from Quantum Hologram Interferometry 11.16 4D Hologram Interferometry of Open-Pit Mining 11.17 Can Relativity Theory Explain 4-D Quantum Geometry Reconstruction? References Index About the Author