ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Recent Developments in Microbial Technologies

دانلود کتاب پیشرفت های اخیر در فناوری های میکروبی

Recent Developments in Microbial Technologies

مشخصات کتاب

Recent Developments in Microbial Technologies

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9789811544385, 9789811544392 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: [469] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 57,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Recent Developments in Microbial Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت های اخیر در فناوری های میکروبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت های اخیر در فناوری های میکروبی

این کتاب بر روی کاربرد میکروارگانیسم‌ها در جنبه‌های مختلف زندگی مانند حفاظت و بهبود گیاهان، اصلاح محیط‌زیست و بهبود سلامت گیاه و انسان تمرکز دارد. کاربردهای مختلف میکروارگانیسم ها به طور عمیق مورد بررسی قرار می گیرند، به عنوان مثال. میکروبیولوژی کاربردی در کشاورزی، میکروب ها در محیط زیست، توسعه آنزیم های میکروبی جدید و میکروب ها در سلامت انسان. به نوبه خود، این کتاب بینش هایی را در مورد میکروارگانیسم های متنوعی که در توسعه برنامه های کاربردی مختلف برای بهبود کشاورزی مورد بررسی و بهره برداری قرار گرفته اند، به اشتراک می گذارد. همچنین در مورد شناسایی و بهره برداری از میکروارگانیسم ها در تشخیص بیماری های انسانی بحث می کند که رویکردهای بالقوه کل نگر را برای سلامت ارائه می دهد. این کتاب با ارائه آخرین اطلاعات و یافته ها در مورد کاربردهای بیوتکنولوژی میکروبی، منبع ارزشمندی را ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

This book focuses on the application of microorganisms in various aspects of life such as plant protection and improvement, environmental remediation, and the improvement of plant & human health. Various applications of microorganisms are examined in depth, e.g. applied microbiology in agriculture, microbes in the environment, the development of new microbial enzymes, and microbes in human health. In turn, the book shares insights into the diverse microorganisms that have been explored and exploited in the development of various applications for agricultural improvements. It also discusses the detection and exploitation of microorganisms in the diagnosis of human diseases, which offer potential holistic approaches to health. Presenting the latest information and findings on the applications of microbial biotechnology, the book offers a valuable resource.



فهرست مطالب

Preface
Contents
Editors and Contributors
	About the Editors
	Contributors
1: Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security
	1.1 Introduction
	1.2 Biopesticide at a Glance
	1.3 Classification of Biopesticides on the Basis of Plant and Microbe Origin
		1.3.1 Biopesticides of Plant Origin
			1.3.1.1 Plant Pesticides
			1.3.1.2 Botanical Biopesticides
		1.3.2 Microbe-Based Biopesticides
			1.3.2.1 Bacterial Biopesticides
			1.3.2.2 Entomopathogenic Fungi as Biopesticide
			1.3.2.3 Viral Biopesticides
			1.3.2.4 Protozoa as Biopesticide
			1.3.2.5 Microscopic Nematodes as Biopesticide
		1.3.3 Biochemical Pesticides
	1.4 Status of Biopesticides in India
	1.5 Advantages and Disadvantages of Biopesticides
		1.5.1 Importance and Advantages
		1.5.2 Disadvantages
	1.6 Summary and Conclusion
	References
2: Microbial Biofertilizers and Biopesticides: Nature´s Assets Fostering Sustainable Agriculture
	2.1 Introduction
	2.2 Microbes and Their Metabolites in Plant Growth Promotion
		2.2.1 Microbes Supplementing Plant Nutrition
			2.2.1.1 Nitrogen
			2.2.1.2 Phosphorous
			2.2.1.3 Potassium
		2.2.2 Microbial Metabolites Regulating Plant Growth
			2.2.2.1 Auxins
			2.2.2.2 Cytokinins
			2.2.2.3 Gibberellins
			2.2.2.4 Aminocyclopropane-1-carboxylate (ACC) Deaminase
	2.3 Microbial Metabolites in Pest Management
		2.3.1 Arthropod Management
		2.3.2 Disease Management
		2.3.3 Nematode Management
		2.3.4 Weed Management
	2.4 Challenges in Success of Microbial Bioformulation
	2.5 Conclusion and Future Prospective
	References
3: Microbial Factories for Biofuel Production: Current Trends and Future Prospects
	3.1 Introduction
	3.2 Need for Biofuels
		3.2.1 To Combat Climate Change
		3.2.2 To Build Economic Development
		3.2.3 To Provide Energy Security
		3.2.4 To Provide Energy Balance
		3.2.5 Biofuels Are Biodegradable and Recyclable
	3.3 Types of Biofuels
		3.3.1 Bioethanol
		3.3.2 Biobutanol
		3.3.3 Biomethanol
		3.3.4 Biodiesel
		3.3.5 Biomethane
		3.3.6 Biohydrogen
		3.3.7 Bioelectricity
		3.3.8 Algal Biofuels
	3.4 Microbes as Factories for Biofuel Production
	3.5 Metabolic Engineering: A Key Technology for Upscaling Microbial Production of Biofuels
	3.6 Metabolic Engineering: The Future of Microbial Biofuel Production
	3.7 Conclusion
	References
4: Industrial Methanogenesis: Biomethane Production from Organic Wastes for Energy Supplementation
	4.1 Introduction
	4.2 Methanogens: Diversity, Morphology and Occurrence
	4.3 Methanogenesis: Substrate Characteristics
	4.4 Methanogenesis: Process Details
	4.5 Methanogenesis: Challenges, Solutions and Applications
		4.5.1 Substrate Co-digestion
		4.5.2 Substrate Pretreatment
		4.5.3 Hydrolytic Enzymes
		4.5.4 Hydrogen and Methane Co-production
		4.5.5 Engineering Eco-Tolerant Microbes
	4.6 Methanogenesis: Optimization Strategies
	4.7 Conclusion and Future Prospects
	References
5: Recent Trends and Advancements in Biosensor Research for Food Safety
	5.1 Introduction
	5.2 Current Public Health Situational Analysis in Developed and Developing Countries
	5.3 Technologies Available for Detection of Foodborne Pathogens
	5.4 Biosensors for Detection of Foodborne Pathogens
		5.4.1 Optical Biosensors
		5.4.2 Electrochemical Biosensors
		5.4.3 Piezoelectric Biosensors
		5.4.4 Immunosensors
	5.5 Future Prospects
	References
6: Bacteriocin: A Potential Biopreservative in Foods
	6.1 Introduction
	6.2 Ecology of Bacteriocins
	6.3 Bacteriocins
		6.3.1 Antimicrobial Peptides Produced by Gram-Positive Bacteria
		6.3.2 Antimicrobial Peptides Produced by Lactic Acid Bacteria (LAB)
		6.3.3 Bacteriocin of Bacillus
		6.3.4 Mode of Action and Structure of Subtilin
		6.3.5 Beneficial Role of Bacillus sp.
		6.3.6 Categorization of Bacteriocins Produced by Bacillus
	6.4 Bacillus as Biopreservative
	6.5 Applications of Bacillus Bacteriocins
		6.5.1 Applications in Human Health
		6.5.2 Applications in Livestock
		6.5.3 Applications in Food
		6.5.4 Application in Aqua Culture
		6.5.5 Applications in Agriculture
	6.6 Hurdle Technology in Biopreservative
	6.7 Conclusion
	References
7: Utilization of Agro-waste in Pectinase Production and Its Industrial Applications
	7.1 Introduction
	7.2 Pectinase Sources and Existence
	7.3 Pectinase and Its Substrate
		7.3.1 Substrates for Pectinases
		7.3.2 Pectin: Structure and Distribution
		7.3.3 Pectic Corpuses
		7.3.4 Biosynthesis of Pectin and Pectic Substances
		7.3.5 Sources of Pectin
	7.4 Microbial Pectinase Sources
	7.5 Classification of Pectic Enzymes
	7.6 Applications of Pectic Enzyme
		7.6.1 Bio-scouring and Textile Processing
		7.6.2 Plant Bast Fiber Degumming
		7.6.3 Wastewater Treatments
		7.6.4 Tea and Coffee Fermentation
		7.6.5 Paper and Pulp Industry
		7.6.6 Animal Feed
		7.6.7 Oil Extractions
		7.6.8 Industrial Preparation of Microbial Pectinase
		7.6.9 Fruit Cordial Preparation
		7.6.10 Agricultural Substrate Saccharification Process
		7.6.11 Bioleaching of Kraft Pulp
		7.6.12 Helps in Purification of Plant Viruses
	7.7 Agro-waste for Pectinase Production
	7.8 Conclusion
	References
8: Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era
	8.1 Introduction
	8.2 Distribution and Occurrence of Gallic Acid in Nature
	8.3 Major Dietary Sources of Gallic Acid
	8.4 Biosynthesis of Gallic Acid
	8.5 Approaches for Gallic Acid Production
		8.5.1 Extraction from Plants
		8.5.2 Acid/Alkaline Hydrolysis of Gallotannins
		8.5.3 Enzymatic Hydrolysis of Tannins
	8.6 Scientific Perspectives on Gallic Acid Production
	8.7 Gallic Acid Manufacturers Worldwide
	8.8 Methods of Detection and Quantification of Gallic Acid
		8.8.1 Chromatographic Methods
		8.8.2 High-Performance Liquid Chromatography (HPLC)
		8.8.3 Gas Chromatography (GC)
		8.8.4 Thin-Layer Chromatography (TLC)
		8.8.5 Spectroscopic Methods
		8.8.6 Capillary Electrophoresis (CE)
	8.9 Applications of Gallic Acid and Its Derivatives
	8.10 Patents on Gallic Acid and Its Ester Derivatives
	8.11 Final Remarks and Future Outlook
	References
9: Role of Metagenomics in Plant Disease Management
	9.1 Introduction
	9.2 Role of Metagenomics in Understanding Microbial Systems and Microbiomes
	9.3 Role of Metagenomics in Understanding Plant-Microbial Interactions
	9.4 Role of Metagenomics in Phytopathology Studies
		9.4.1 Bacterial
		9.4.2 Fungal
		9.4.3 Viral
	9.5 Role of Metagenomics in Plant Disease Diagnostics
	9.6 Role of Metagenomics in Isolation of Novel Microbial Species for Disease Control
	9.7 Role of Metagenomics to Address Climate Change Problems and Their Influence on Plant Vigour
	9.8 Role of Metagenomics for Production of Protective Compounds for Exogenous Applications
	9.9 Role of Metagenomics in Plant Breeding for Disease Resistance
	9.10 Role of Metagenomics for Production of Disease-Resistant GM Crops
	9.11 Role of Metagenomics in Plant Disease Forecasting
	9.12 Limitations and Challenges
	9.13 Conclusion and Future Prospects
	References
10: Endophytes as Guardians of Plants Against Diseases
	10.1 Introduction
	10.2 Classification of Endophytes
		10.2.1 Bacterial Endophytes
		10.2.2 Fungal Endophytes
			10.2.2.1 Class I C-Endophytes (Clavicipitaceous Endophyte)
			10.2.2.2 Non-clavicipitaceous Endophytes
	10.3 Endophytic Associations with Plant
		10.3.1 Foliar Endophytes
		10.3.2 Rhizosphere Endophytes
	10.4 Endophytes as Guardians of Plants Against Biotic Stresses
		10.4.1 Defense Against Herbivores
		10.4.2 Defense Against Plant Pathogens
		10.4.3 Chemical Species Produced by Endophytes in Plant Defense
	10.5 Strategies Employed by Endophytes Against Pathogens
		10.5.1 Activation of Defense-Related Genes
		10.5.2 Growth Promotion for Plant Defense
		10.5.3 Defense via Secondary Metabolite Production
		10.5.4 Defense Provision Through Altered Nutrients
	10.6 Concluding Remarks
	References
11: Mass Production and Quality of Biological Control Agents for Pest Management
	11.1 Introduction
	11.2 Approach of Biological Control
	11.3 Principles as Well as Procedure of Biological Control
		11.3.1 Introduction of Bioagents
			11.3.1.1 Some Successful Examples
			11.3.1.2 Examples of Successful Biological Control in India
			11.3.1.3 Pest Resistance Against Bioagents
		11.3.2 Colonization of Natural Enemies
			11.3.2.1 Assessment of Natural Enemies
		11.3.3 Augmentation
			11.3.3.1 Scientific Base for Augmentation
		11.3.4 Conservation of Bioagents
			11.3.4.1 Rationalized Use of Pesticides
			11.3.4.2 Provide Food and Shelter
			11.3.4.3 Effective Management Practices
			11.3.4.4 Impact of Plant Types on Bioagents
	11.4 Mass Production Techniques of Effective Parasitoid
		11.4.1 Mass-Rearing Procedure of Egg Parasitoid, Trichogramma Species
		11.4.2 Mass-Rearing Procedure of Larval Parasitoids, Bracon hebetor and B. brevicornis
		11.4.3 Mass-Rearing Procedure of Larval Parasitoids, Chelonus blackburni
		11.4.4 Mass-Rearing Procedure of Pupal Parasitoids, Tetrastichus israeli and Trichospilus pupivora
	11.5 Mass-Rearing Procedure of Effective Predators
		11.5.1 Mass Rearing of Ladybird Beetle, Coccinella septempunctata
		11.5.2 Mass Rearing of Cryptolaemus Montrouzieri Mulsant
		11.5.3 Mass Rearing of Green Lacewing, Chrysoperla carnea (Stephens)
	11.6 Classical Biological Control of Weeds
		11.6.1 Advisable Characters of Weed Killer Insect
	11.7 Future Scope of Biological Control in Pest Management
	11.8 Conclusion
	References
12: Iron Chlorosis in Peach and Its Eco-Friendly Management: An Outlook
	12.1 Introduction
	12.2 Iron Fixation in Calcareous Soil
	12.3 Mechanism for Iron Uptake in Higher Plants
		12.3.1 Plant Strategies for Iron Uptake
		12.3.2 Organisms Intervened Iron Uptake
	12.4 Markers for Advance Detection of Fe Chlorosis
	12.5 Physiological Markers
	12.6 Molecular Markers
	12.7 Chlorosis Control Measures in Peach
		12.7.1 Index Tissue
		12.7.2 Exogenous Application of Iron Sources
	12.8 Future Lines of Research
		12.8.1 Bioremediation
		12.8.2 Application of Nano-Fertilizers
		12.8.3 Rootstock Breeding and Transgenic Technology
	12.9 Conclusion
	References
13: Role of Microbes in Plastic Degradation
	13.1 Introduction
	13.2 Biodegradation of Polymers
		13.2.1 Mechanism and Pathways Involved in Polymer Degradation by Fungus
		13.2.2 Degradation of Polymeric Wastes by Bacteria
		13.2.3 Factors Affecting Degradation of Polymers
	13.3 Involvement of Enzymes Secreted by Microorganisms in Biodegradation Process of Polymer Wastes
	13.4 Toxicity of Polymers and Their Degraded Products
	13.5 Conclusions and Future Perspectives
	References
14: Bioplastics: Fundamentals to Application
	14.1 Introduction
	14.2 PHA Inclusions
		14.2.1 Polyhydroxyalkanoate Synthase
		14.2.2 PHA Depolymerase
		14.2.3 Phasins (PhaP)
	14.3 Characterization of PHAs
	14.4 Biosynthesis of PHAs
		14.4.1 Molecular Understanding of PHA Synthesis
	14.5 Production of PHA
		14.5.1 PHA Production in Microbes
		14.5.2 Fermentation Process
		14.5.3 PHA Production through Recombinant DNA Technology
		14.5.4 PHA in Plants
		14.5.5 PHA Production from Waste Substrates
			14.5.5.1 Production from Plant Waste
			14.5.5.2 Production from Biological Waste
			14.5.5.3 Production from Activated Sludge
			14.5.5.4 Production from Wastewater
	14.6 Recovery of PHAs
	14.7 Biodegradation of PHA
	14.8 Applications of PHAs
	14.9 Conclusions
	References
15: Microbial Electrochemical Dye Degradation: Present State of Art
	15.1 Introduction
	15.2 Problems Associated with Azo Dye Disposing
	15.3 Industries Associated with Dyes
		15.3.1 Conventional Way of Wastewater Treatment Containing Dye
			15.3.1.1 Physical Methods
				Adsorption
				Reverse Osmosis
				Ultrafiltration
				Nanofiltration
				Microfiltration
			15.3.1.2 Chemical Method
				Electrocoagulation
				Coagulation Flocculation Sedimentation
				Flotation
				Electrochemical Oxidation
				Ozone Oxidation
				Photo Catalytic Degradation
			15.3.1.3 Biological Method
		15.3.2 Mechanism of Dye Degradation with Aerobic Bacteria
			15.3.2.1 Mechanism of Azo Dye Reduction
				Chemical Azo Dye Reduction
				Aerobic Treatment on Aromatic Amines
	15.4 Microbial Fuel Cells (MFC)
		15.4.1 MFC Components
		15.4.2 Mechanism for MFC´s Working
			15.4.2.1 Single-Chamber MFC
			15.4.2.2 Dual Chamber MFC
		15.4.3 Mode of Action of Dye Degradation Using Microorganisms in MFC
		15.4.4 Advantages of MFC
		15.4.5 MFC Performance
			15.4.5.1 Physical Parameters
				Electrode Materials
					Anode Materials
					Non-carbon Anode Material
					Anode Surface Modifier
					Cathode Material
					Cathode Surface Area
					Cathodic Electron Acceptor (EA)
					Cathode Catalyst
					Operating Condition in the Cathode Chamber
				Separators
			15.4.5.2 Process Parameters
				Substrate Type
				Substrate Concentration
				Organic Loading Rate
				Inoculum
					Pure Culture
					Mixed Culture
				External Resistance
		15.4.6 Evaluation of Performance of MFC Components
			15.4.6.1 Evaluation of Anode Performance
			15.4.6.2 Evaluation of Cathode Performance
		15.4.7 MFC Reactor Configuration
			15.4.7.1 Double-Chambered MFCs
			15.4.7.2 Single-Chambered MFCs
			15.4.7.3 MFCs with Multielectrode System
			15.4.7.4 Stacked MFCs
	15.5 Case Studies of Simultaneous Azo Dye Removal and Electricity Generation
		15.5.1 Cationic Dyes
		15.5.2 Anionic Dyes
	15.6 Challenges in MFC Operation for Dye Degradation
	15.7 Conclusion
	References
16: Psychrophiles as the Source for Potential Industrial Psychrozymes
	16.1 Introduction
	16.2 Briefing of the Initial Exploration of Psychrophiles
	16.3 Strategy for Cryo-Defense by Psychrophilic Bacteria
		16.3.1 Cold Acclimation Proteins and Antifreeze Proteins
			16.3.1.1 Concept of Cold-Active Biocatalyst at Low Temperatures
		16.3.2 Structural Adaptation of the Psychrozymes
		16.3.3 Residual Sequences of Cold-Adapted Enzymes
		16.3.4 Cold-Adapted Enzyme from Marine Psychrophilic Microorganisms
	16.4 Application of Cold-Active Enzymes from Marine Psychrophilic
	16.5 Conclusion and Future Aspect
	References
17: Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent
	17.1 Introduction
	17.2 A Brief Description of Bacillus anthracis and Anthrax
	17.3 Bacterial Transcriptional Regulators
	17.4 The Pleiotropic Regulator CodY in B. anthracis
		17.4.1 Metabolism
		17.4.2 Sporulation
		17.4.3 Virulence
	17.5 Structure of CodY of B. anthracis and its Interaction with GTP
	17.6 Conclusions
	References
18: Medicinal Fungi: A Natural Source of Pharmacologically Important Metabolites
	18.1 Introduction
	18.2 Medicinal Important Fungi
		18.2.1 Ganoderma lucidum
		18.2.2 Inonotus obliquus
		18.2.3 Cordyceps
		18.2.4 Phellinus
		18.2.5 Xylaria
	18.3 Conclusion
	References
19: Biochemical Aspects of Syngas Fermentation
	19.1 Introduction
		19.1.1 Advantages with Syngas Fermentation
	19.2 Raw Materials for Syngas Fermentation
	19.3 Microorganisms
		19.3.1 Genetically Engineered Bacteria
	19.4 Biochemical Pathway for Syngas Fermentation
	19.5 Bioreactor Design and Configuration for Syngas Fermentation
		19.5.1 Continuous Stirred-Tank Reactor (CSTR)
		19.5.2 Bubble Column Reactors
		19.5.3 Fixed Bed Gasification System
		19.5.4 Fluidized Bed Gasification System
		19.5.5 Hollow Fibre Membrane
		19.5.6 Trickle Bed Reactors
		19.5.7 Others
	19.6 Factors Affecting Syngas Fermentation
		19.6.1 Nutrient Media and Metal Cofactors
		19.6.2 Type of Microorganisms
		19.6.3 Temperature
		19.6.4 pH
		19.6.5 Bioreactor Configuration
		19.6.6 Mass Transfer Rate
		19.6.7 Inhibitory Compounds
	19.7 Potential Products and Its Yield
		19.7.1 Acetate
		19.7.2 Ethanol
		19.7.3 2, 3-Butanediol
		19.7.4 Butanol
		19.7.5 Hydrogen
		19.7.6 Methane
		19.7.7 Others
	19.8 Bottleneck During Syngas Fermentation
	19.9 Conclusion
	References
20: Marine Actinobacteria: New Horizons in Bioremediation
	20.1 Introduction
	20.2 Global and Indian Scenario of Actinobacteria-Mediated Remediation
	20.3 Strategies for Bioremediation
		20.3.1 Applications of the Defined Mixed Cultures
		20.3.2 Cell and Enzyme Immobilization
		20.3.3 Actinobacterial Biosurfactants and Bioremediation
		20.3.4 Bioremediation of Organic and Inorganic Pollutants
		20.3.5 Marine Actinomycetes in Bioremediation
	20.4 Factors Influencing the Bioremediation
		20.4.1 Bio-accessibility of Pollutants
		20.4.2 Extent of Aerobic Conditions
		20.4.3 Toxicity of the Pollutants
		20.4.4 pH of the Surrounding
		20.4.5 Microbial Distinctness
	20.5 Methods for the Evaluating the Bioremediation
	References
Index




نظرات کاربران