ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Radio Science Techniques for Deep Space Exploration

دانلود کتاب تکنیک های علوم رادیویی برای اکتشاف اعماق فضا

Radio Science Techniques for Deep Space Exploration

مشخصات کتاب

Radio Science Techniques for Deep Space Exploration

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2021053318, 9781119734154 
ناشر:  
سال نشر: 2022 
تعداد صفحات: 354 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Radio Science Techniques for Deep Space Exploration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکنیک های علوم رادیویی برای اکتشاف اعماق فضا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Radio Science Techniques for Deep Space Exploration
Contents
Foreword
Preface
Acknowledgments
Author and Contributors
1 Investigations and Techniques
	1.0 Introduction
	1.1 Historical Background
		1.1.1 The Field of Radio Science
	1.2 Fundamental Concepts
		1.2.1 Categories of RS Investigations
		1.2.2 Related Fields
	1.3 Historical Development
	1.4 Overview of the Radio Science Instrumentation System
		1.4.1 Flight System
		1.4.2 Ground System
		1.4.3 Other Ground Stations
	1.5 Noise, Error Sources, and Calibrations
	1.6 Experiment Implementation, Data Archiving, and Critical Mission Support
	1.7 Radio Science at Home
	1.8 Future Directions
	1.9 Summary and Remaining Chapters
	Appendix 1A Selected Accomplishments and Planned Observations in Spacecraft Radio Science
		1A.1 Selected Accomplishments in Radio Science
		1A.2 Planned Observations in the Near-Term
		1A.3 Planned Observations in the Long Term
2 Planetary Atmospheres, Rings, and Surfaces
	2.1 Overview of Radio Occultations
	2.2 Neutral Atmospheres
		2.2.1 Abel Inversion
	2.3 Ionospheres
	2.4 Rings
		2.4.1 Ring Occultation Observables
		2.4.2 Ring Occultation Analysis
		2.4.3 Ring Diffraction Correction
		2.4.4 Data Decimation and Profile Resolution
		2.4.5 Signal-to-noise Ratio-resolution Tradeoff
	2.5 Surface Scattering
3 Gravity Science and Planetary Interiors
	3.1 Overview
	3.2 Gravity Observables and Formulations
		3.2.1 Alternative Basis and Methods
		3.2.2 Tidal Forces and Time Variable Gravity
		3.2.3 Covariance Analysis
	3.3 Earth and Moon Gravity Measurements and the Development of Crosslinks
	3.4 Shape and Topography Data for Interpretation of Gravity Measurements
		3.4.1 Imagery
		3.4.2 Altimetry
		3.4.3 Space-based Radar
		3.4.4 Radio Occultations
		3.4.5 Ground-based Radar
		3.4.6 Examples of Results of Gravity–Topography Analysis
	3.5 Application to Solar System Bodies
		3.5.1 Moon
		3.5.2 Mercury
		3.5.3 Venus
		3.5.4 Mars
		3.5.5 Jupiter
		3.5.6 Saturn
		3.5.7 Uranus
		3.5.8 Neptune
		3.5.9 Pluto
		3.5.10 Asteroids and Comets
		3.5.11 Pioneer and Earth Flyby Anomalies
	3.6 A User’s Guide
		3.6.1 Calculation of Observables and Partials
		3.6.2 Estimation Filter
		3.6.3 Solution Analysis
	Appendix 3A Planetary Geodesy
		3A.1 Planetary Geodesy: Gravitational Potentials and Fields
		3A.2 Gravity Determination Technique
		3A.3 Dynamical Integration
		3A.4 Processing of Observations
		3A.5 Filtering of Observations
4 Solar and Fundamental Physics
	4.1 Principles of Heliospheric Observations
	4.2 Inner Heliospheric Electron Density
	4.3 Density Power Spectrum
	4.4 Intermittency, Nonstationarity, and Events
	4.5 Faraday Rotation
	4.6 Spaced-receiver Measurements
	4.7 Space-time Localization of Plasma Irregularities
	4.8 Utility for Telecommunications Engineering
	4.9 Precision Tests of Relativistic Gravity
	4.10 Scientific Goals and Objectives
		4.10.1 Determine γ to an Accuracy of 2 × 10−6
		4.10.2 Determine β to an Accuracy of ~3 × 10−5
		4.10.3 Determine η to an Accuracy of at Least 4.4 × 10−4
		4.10.4 Determine α1 to an Accuracy of 7.8 × 10−6
		4.10.5 Determine the Solar Oblateness to an Accuracy of 4.8 × 10−9
		4.10.6 Test Any Time Variation of the Gravitational Constant, G,
to an Accuracy of 3 × 10−13 Per Year
		4.10.7 Characterize the Solar Corona
	4.11 Comparison with Other Experiments
		4.11.1 Cassini
		4.11.2 Gravity Probe B
		4.11.3 Messenger
		4.11.4 Lunar Laser Ranging
		4.11.5 Gaia
	4.12 MORE Summary
	4.13 Anomalous Motion of Pioneers 10 and 11
	Appendix 4A Solar Corona Observation Methodology Illustrated by Mars Express
		4A.1 Formulation
		4A.2 Total Electron Content from Ranging Data
		4A.3 Change in Total Electron Content from Doppler Data
		4A.4 Electron Density
		4A.5 Coronal Mass Ejections
		4A.6 Separation of Uplink and Downlink Effects from Plasma
		4A.7 Earth Atmospheric Correction
		4A.8 Example Data
	Appendix 4B Faraday Rotation Methodology Illustrated by Magellan Observations
		4B.1 Formulation
		4B.2 Coronal Radio Sounding
		4B.3 The Faraday Rotation Effect
		4B.4 Measurement of the Total Electron Content
		4B.5 Combining the Faraday Rotation and Total Electron Content
		4B.6 Instrument Overview: The Magellan Spacecraft
		4B.7 Instrument Overview: The Deep Space Network
		4B.8 Data Processing and Results
		4B.9 Conclusion
	Appendix 4C Precision Doppler Tracking of Deep Space Probes and the Search for Low-frequency Gravitational Radiation
		4C.1 Background
		4C.2 Response of Spacecraft Doppler Tracking to Gravitational Waves
		4C.3 Noise in Doppler GW Observations and Their Transfer Functions
		4C.4 Detector Performance
			4C.4.1 Periodic and Quasi-periodic Waves
			4C.4.2 Burst Waves
			4C.4.3 Stochastic Waves
		4C.5 Sensitivity Improvements in Future Doppler GW Observations
5 Technologies, Instrumentation, and Operations
	5.1 Overview
		5.1.1 End-to-end Instrumentation Overview
		5.1.2 Experiment Error Budgets
	5.2 Key Concepts and Terminology
		5.2.1 The Allan Deviation for Frequency and Timing Standards
		5.2.2 Signal Operational Modes
		5.2.3 Reception Modes
		5.2.4 Signal Carrier Modulation Modes
	5.3 Radio Science Technologies
		5.3.1 Spacecraft Ultrastable Oscillator
		5.3.2 Spacecraft Ka-band Translator
		5.3.3 Spacecraft Open-loop Receiver
		5.3.4 Spacecraft Radio Science Beacon
		5.3.5 Ground Water Vapor Radiometer
		5.3.6 Ground Advanced Ranging Instrument
		5.3.7 Ground Bethe Hole Coupler
		5.3.8 Ground Advanced Pointing Techniques
	5.4 Operations and Experiment Planning
	5.5 Data Products
		5.5.1 Range Rate
		5.5.2 Range
		5.5.3 Delta Differential One-way Ranging (Delta-DOR)
		5.5.4 Differenced Range Versus Integrated Doppler
		5.5.5 Open-loop Receiver (Radio Science Receiver)
		5.5.6 Media Calibration
		5.5.7 Spacecraft Trajectory
		5.5.8 Calibration Data Sets
	Appendix 5A Spacecraft Telecommunications System and Radio Science Flight Instrument for Several Deep Space Missions
6 Future Directions in Radio Science Investigations and Technologies
	6.1 Fundamental Questions toward a Future Exploration Roadmap
		6.1.1 Fundamental Questions about the Utility of RS Techniques
		6.1.2 Possible Triggers for Specific Innovations for Future Investigations
		6.1.3 Possible Synergies with Other Fields
		6.1.4 Examining Relevant Methodologies
	6.2 Science-Enabling Technologies: Constellations of Small Spacecraft
		6.2.1 Constellations for Investigations of Atmospheric Structure and Dynamics
		6.2.2 Constellations for Investigations of Interior Structure and Dynamics
		6.2.3 Constellations for Simultaneous and Differential Measurements
		6.2.4 Constellations of Entry Probes and Atmospheric Vehicles
		6.2.5 Constellations for Investigations of Planetary Surface
	6.3 Science-enabling via Optical Links
	6.4 Science-enabling Calibration Techniques
		6.4.1 Earth’s Troposphere Water Vapor Radiometry
		6.4.2 Antenna Mechanical Noise
		6.4.3 Advanced Ranging
	6.5 Summary
	Appendix 6A The National Academies Planetary Science Decadal Survey,
Radio Science Contribution, 2009: Planetary Radio Science: Investigations of Interiors, Surfaces, Atmospheres, Rings, and Environments
		6A.1 Summary
		6A.2 Background
		6A.3 Historical Opportunities and Discoveries
		6A.4 Recent Opportunities and Discoveries
		6A.5 Future Opportunities
		6A.6 Technological Advances in Flight Instrumentation
		6A.7 The Future of Flight Instrumentation
			6A.7.1 Crosslink Radio Science
			6A.7.2 Ka-band Transponders and Other Instrumentation
		6A.8 Ground Instrumentation
			6A.8.1 NASA’s Deep Space Network
			6A.8.2 Other Facilities
		6A.9 New Communications Architectures: Arrays and Optical Links
		6A.10 Conclusion and Goals
	Appendix 6B The National Academies Planetary Science Decadal Survey,
Radio Science Contribution: Solar System Interiors, Atmospheres, and Surfaces Investigations via Radio Links: Goals for the Next Decade
		6B.1 Summary
		6B.2 Current Status of RS Investigations
		6B.3 Key Science Goals for the Next Decade
		6B.4 Radio Science Techniques for Achieving the Science Goals of the Next Decade
		6B.5 Technology Development Needed in the Next Decade
References
Acronyms and Abbreviations
Index
EULA




نظرات کاربران