دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: John Damilakis
سری: IPEM–IOP Series in Physics and Engineering in Medicine and Biology
ISBN (شابک) : 0750313188, 9780750313186
ناشر: IOP Publishing
سال نشر: 2020
تعداد صفحات: 228
[229]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Radiation Dose Management of Pregnant Patients, Pregnant Staff and Paediatric Patients: Diagnostic and Interventional Radiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدیریت دوز پرتو در بیماران باردار، کارکنان باردار و بیماران اطفال: رادیولوژی تشخیصی و مداخله ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب منعکس کننده پیشرفت های گسترده ای است که در زمینه دزیمتری پزشکی و حفاظت از پرتوهای پزشکی انجام شده است و اطلاعاتی در مورد استفاده عملی از اطلاعات جدید در مدیریت دوز پرتو در بیماران باردار، کارکنان باردار و بیماران اطفال در تشخیص ارائه می دهد. و رادیولوژی مداخله ای.
This book reflects the broad advances that have been made in the field of medical dosimetry and medical radiation protection, and it provides information about the practical use of new information in radiation dose management of pregnant patients, pregnant staff and paediatric patients in diagnostic and interventional radiology.
PRELIMS.pdf Preface Editor biography John Damilakis List of contributors CH001.pdf Chapter 1 Dosimetry 1.1 Physical phantoms simulating pregnancy and children 1.1.1 Introduction to physical phantoms 1.1.2 Phantom materials 1.1.3 Anthropomorphic phantoms 1.1.4 Commercially available anthropomorphic phantoms 1.1.5 Research-based anthropomorphic phantoms 1.2 Thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) 1.2.1 Introduction 1.2.2 Luminescence – terminology 1.2.3 Crystalline structure of thermoluminescent materials 1.2.4 Production of thermoluminescence by ionizing radiation 1.2.5 The glow curve 1.2.6 The role of impurity atoms Mg,Ti in the TL process of LiF:Mg:Ti 1.2.7 Fading 1.2.8 Linearity/supralinearity and sensitization 1.2.9 Photon energy response of thermoluminescent materials 1.2.10 Calibration of thermoluminescent dosimeters 1.2.11 TLD reader 1.2.12 Thermoluminescent materials 1.2.13 The physical properties of LiF 1.2.14 Sources of error in thermoluminescence dosimetry 1.3 Optically stimulated luminescence dosimeters (OSLDs) 1.3.1 The fundamentals of optically stimulated luminescence (OSL) dosimetry 1.3.2 Stimulation methods 1.3.3 Basic experimental set-up 1.3.4 The basic properties of Al2O3:C as an OSL dosimeter 1.3.5 Dose response 1.3.6 Transient signals 1.3.7 OSL dosimetry in diagnostic radiology 1.3.8 A comparison of the TL versus OSL dosimetry 1.4 Computational phantoms simulating pregnancy and children 1.4.1 Introduction to computational phantoms 1.4.2 Evolution and basic components of computational phantoms 1.4.3 Solid geometry stylized phantoms 1.4.4 Voxelized phantoms 1.4.5 Boundary representation phantoms 1.5 Monte Carlo simulations and computational phantoms 1.5.1 Deterministic and probabilistic calculation methods 1.5.2 Introduction to Monte Carlo methods 1.5.3 Monte Carlo radiation transport codes 1.5.4 Commercially available computational dosimetry software 1.5.5 Computing conceptus and paediatric doses using Μonte Carlo radiation transport codes References CH002.pdf Chapter 2 Biological effects of exposure to ionizing radiation during gestation and childhood 2.1 Biological effects to conceptus from ionizing radiation 2.1.1 Menstrual cycle, conception and fetal development 2.1.2 Radiation effects of exposed conceptus 2.1.3 Radiosensitivity of a developing conceptus 2.2 Biological effects to children from ionizing radiation 2.2.1 Public opinion versus true facts 2.2.2 Radiation effects to children; what are the mechanisms 2.2.3 Paediatric anatomical and physiological characteristics: differences from adults 2.2.4 Most prominent radiation-induced cancers in children 2.2.5 Diagnostic imaging and cancer risk: latest data References CH003.pdf Chapter 3 Parameters that influence conceptus and paediatric patient radiation dose from radiodiagnostic procedures 3.1 Radiography and fluoroscopy parameters that influence conceptus and paediatric dose 3.1.1 The tube potential (kVp) 3.1.2 The tube load and exposure time product (mAs) 3.1.3 The automatic exposure control (AEC) system 3.1.4 Selection of tube-to-patient and tube-to-detector distance 3.1.5 Setting up the collimation and field size 3.1.6 Projection 3.1.7 Beam quality 3.1.8 Anti-scatter grid 3.1.9 Detector technology 3.1.10 Fluoroscopy 3.1.11 Dose rate 3.1.12 The fluoroscopy beam-on time 3.1.13 Magnification 3.1.14 Automatic exposure control 3.1.15 The entrance exposure rate to the detector (EERD) 3.1.16 The patient skin entrance exposure rate (SEER) 3.1.17 Location of conceptus relative to the X-ray beam 3.1.18 Anatomic characteristics of the pregnant patient that affects conceptus dose 3.1.19 The effect of paediatric patient’s size 3.2 CT parameters that influence conceptus and paediatric dose 3.2.1 Exposure parameters affecting radiation dose to conceptus or children exposed during a CT examination 3.2.2 CT equipment characteristics/dose sparing affecting radiation dose to conceptus or children exposed during a CT examination 3.2.3 Patient-related factors affecting radiation dose to conceptus or children exposed during a CT examination References CH004.pdf Chapter 4 Amount of dose absorbed by the conceptus and paediatric patients from diagnostic and interventional radiology 4.1 Conceptus dose and radiation-induced risk associated with diagnostic and interventional X-ray examinations 4.1.1 Conceptus dose and radiogenic risk associated with radiography 4.1.2 Conceptus dose and radiogenic risk associated with computed tomography (CT) 4.1.3 Conceptus dose and radiogenic risk associated with fluoroscopy and fluoroscopically guided procedures 4.2 Paediatric dose and radiation-induced risk associated with diagnostic and interventional X-ray examinations 4.2.1 Paediatric doses and radiation-induced risks associated with radiography 4.2.2 Paediatric doses and radiation-induced risks associated with fluoroscopy 4.2.3 Paediatric doses and radiation-induced risks associated with CT 4.2.4 Paediatric doses and radiation-induced risks associated with interventional procedures References CH005.pdf Chapter 5 Methods to calculate conceptus and paediatric dose 5.1 Methods to calculate conceptus dose from diagnostic and interventional procedures 5.1.1 Methods published in the literature to calculate conceptus dose from radiographic and fluoroscopic examinations 5.1.2 Methods published in the literature to calculate conceptus dose from CT 5.1.3 Conceptus dose estimation (CoDE) software 5.2 Methods to calculate paediatric dose from diagnostic and interventional procedures 5.2.1 Introduction 5.2.2 Methodology to calculate paediatric dose in radiography and fluoroscopy 5.2.3 Methodology to calculate paediatric dose in CT 5.2.4 Paediatric organ dose and effective dose; practical issues 5.2.5 Examples in everyday clinical practice References CH006.pdf Chapter 6 Optimization of radiological examinations performed during pregnancy 6.1 Radiography/fluoroscopy during pregnancy: methods for dose optimization 6.1.1 Introduction 6.1.2 Radiation protection approach for imaging the female patient 6.1.3 Practices for optimizing conceptus dose in radiographic examinations performed on pregnant patients 6.1.4 Practices for optimizing conceptus dose in fluoroscopic examinations performed on pregnant patients 6.2 CT during pregnancy: methods for dose optimization 6.2.1 Introduction 6.2.2 Optimizing CT examinations of pregnant patients: recommendations for radiologists 6.2.3 Reducing conceptus dose from CT examinations performed on the expectant mother: recommendations for operators References CH007.pdf Chapter 7 Optimization of examinations performed on paediatric patients 7.1 Optimization of radiographic and fluoroscopic examinations performed on paediatric patients 7.1.1 Introduction 7.1.2 Radiation protection concepts 7.1.3 Appropriateness and clinical decisions 7.1.4 Assessment of radiation dose and image quality—a primer 7.1.5 Practices for optimization of radiographic examinations performed on paediatric patients 7.1.6 Diagnostic reference levels (DRLs) in paediatric radiography and fluoroscopy 7.1.7 Practices for optimization of fluoroscopic examinations performed on paediatric patients 7.1.8 Development of a quality assurance program 7.2 Methods of dose optimization in CT 7.2.1 Introduction 7.2.2 Justification as the first step of reducing radiation doses 7.2.3 Positioning of the paediatric patient 7.2.4 Scanogram 7.2.5 Shielding of organs for paediatric patients 7.2.6 Immobilization 7.2.7 Paediatric specific exposure parameters 7.2.8 Filtration 7.2.9 Iterative reconstruction algorithms 7.2.10 Limitation of scan length 7.2.11 Scan series 7.2.12 Diagnostic reference levels (DRLs) in paediatric CT 7.2.13 Dose management software References CH008.pdf Chapter 8 The management of (a) pregnant patients and (b) pregnant employees 8.1 The management of pregnant patients 8.1.1 Introduction 8.1.2 Intentional exposure of pregnant patients 8.1.3 Accidental exposure of pregnant patients 8.2 The management of pregnant employees 8.2.1 Program to evaluate and control conceptus dose 8.2.2 Conceptus dose anticipation and workload estimation 8.2.3 Counseling and dose monitoring References APP1.pdf Chapter References