دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4th ed. نویسندگان: Fritz Haake, Sven Gnutzmann, Marek Kuś سری: Springer Series in Synergetics ISBN (شابک) : 9783319975795, 9783319975801 ناشر: Springer International Publishing سال نشر: 2018 تعداد صفحات: 677 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
کلمات کلیدی مربوط به کتاب امضاهای کوانتومی آشوب: فیزیک، فیزیک کوانتومی، کاربردهای دینامیک غیرخطی و نظریه آشوب، فیزیک آماری و سیستم های دینامیکی، روش های ریاضی در فیزیک
در صورت تبدیل فایل کتاب Quantum Signatures of Chaos به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امضاهای کوانتومی آشوب نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن کلاسیک در حال حاضر مقدمه و بررسی بسیار خوبی از حوزه
هنوز در حال گسترش آشوب کوانتومی ارائه می دهد. برای این نسخه
چهارم که مدت ها منتظرش بودیم، متن اصلی کاملاً مدرن شده
است.
موضوعات شامل مقدمه ای کوتاه بر آشفتگی کلاسیک همیلتونی، کاوش
دقیق جنبه های کوانتومی دینامیک غیرخطی، معیارهای کوانتومی مورد
استفاده برای تشخیص منظم است. و حرکت نامنظم، و تقارن های ضد
واحدی (برگشت زمان تعمیم یافته) و یکپارچه. کلاسهای تقارن
استاندارد ویگنر-دایسون و همچنین کلاسهای غیراستاندارد
معرفیشده توسط آلتلند و زیرنباوئر، با مثالهای متعددی بررسی
و نشان داده شدهاند. تئوری ماتریس تصادفی بر حسب روش های
کلاسیک و مدل سیگمای فوق متقارن ارائه شده است. قدرت روش دوم با
کاربردهای خارج از نظریه ماتریس تصادفی، مانند مکان یابی
کوانتومی، نمودارهای کوانتومی، و نوسانات طیفی جهانی دینامیک
هرج و مرج فردی آشکار می شود. هم ارزی مدل سیگما و نظریه گردش
تناوبی نیم کلاسیک گوتسویلر نشان داده شده است. آخرین اما نه کم
اهمیت، مکانیک کوانتومی سیستم های آشوب اتلافی نیز به اختصار
توضیح داده شده است.
هر فصل با مجموعه ای از مشکلات همراه است که به تازه واردان کمک
می کند تا درک خود را آزمایش کرده و عمیق تر کنند و بر روش های
ارائه شده تسلط کامل پیدا کنند.
This by now classic text provides an excellent introduction
to and survey of the still-expanding field of quantum chaos.
For this long-awaited fourth edition, the original text has
been thoroughly modernized.
The topics include a brief introduction to classical
Hamiltonian chaos, a detailed exploration of the quantum
aspects of nonlinear dynamics, quantum criteria used to
distinguish regular and irregular motion, and antiunitary
(generalized time reversal) and unitary symmetries. The
standard Wigner-Dyson symmetry classes, as well as the
non-standard ones introduced by Altland and Zirnbauer, are
investigated and illustrated with numerous examples. Random
matrix theory is presented in terms of both classic methods
and the supersymmetric sigma model. The power of the latter
method is revealed by applications outside random-matrix
theory, such as to quantum localization, quantum graphs, and
universal spectral fluctuations of individual chaotic
dynamics. The equivalence of the sigma model and Gutzwiller’s
semiclassical periodic-orbit theory is demonstrated. Last but
not least, the quantum mechanics of dissipative chaotic
systems are also briefly described.
Each chapter is accompanied by a selection of problems that
will help newcomers test and deepen their understanding, and
gain a firm command of the methods presented.
Foreword to the First Edition Preface to the Fourth Edition Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Contents 1 Introduction References 2 Time Reversal and Unitary Symmetries 2.1 Autonomous Classical Flows 2.2 Spinless Quanta 2.3 Spin-1/2 Quanta 2.4 Hamiltonians Without T Invariance 2.5 T Invariant Hamiltonians, T2 = 1 2.6 Unitary Symmetries 2.7 Kramers\' Degeneracy for T Invariant Hamiltonians, T2=-1 2.8 T Invariant Hamiltonians with T2=-1 and Additional Unitary Symmetries 2.9 T Invariance with T2=-1 and no Unitary Symmetries 2.10 Nonconventional Time Reversal 2.11 Stroboscopic Maps for Periodically Driven Systems 2.12 Time Reversal for Maps 2.13 Canonical Transformations for Floquet Operators 2.14 Universality 2.15 Universality for the Kicked Top: The Level Spacing Distribution 2.16 Beyond Dyson\'s Threefold Way 2.16.1 Spectral Mirror Symmetries 2.16.2 Universality in Non-standard Symmetry Classes 2.16.3 Hamiltonian Matrix Structures and Canonical Transformations for Non-standard Symmetries 2.16.4 Physical Realizations of Non-standard Symmetry Classes in Fermionic Systems 2.16.5 Quantum Mechanical Realisation of Non-standard Symmetry Classes in Finite Dimensional Hilbert Spaces: Two Coupled Tops 2.16.6 Non-standard Universality for Two Coupled Tops 2.17 Problems References 3 Level Repulsion 3.1 Preliminaries 3.2 Symmetric Versus Nonsymmetric H or F 3.3 Kramers\' Degeneracy 3.4 Universality Classes of Level Repulsion 3.5 Nonstandard Symmetry Classes 3.5.1 The Chiral Symmetry Classes 3.5.2 Classes CI and BDIIIν 3.5.3 Classes BDν and C 3.6 Experimental Observation of Level Repulsion 3.7 Problems References 4 Level Clustering 4.1 Preliminaries 4.2 Invariant Tori of Classically Integrable Systems 4.3 Einstein–Brillouin–Keller Approximation 4.4 Level Crossings for Integrable Systems 4.5 Poissonian Level Sequences 4.6 Superposition of Independent Spectra 4.7 Periodic Orbits and the Semiclassical Density of Levels 4.8 Level Density Fluctuations for Integrable Systems 4.9 Exponential Spacing Distribution for Integrable Systems 4.10 Equivalence of Different Unfoldings 4.11 Problems References 5 Random-Matrix Theory 5.1 Preliminaries 5.2 Gaussian Ensembles of Hermitian Matrices 5.2.1 Gaussian Orthogonal Ensemble 5.2.2 Gaussian Unitary Ensemble 5.2.3 Gaussian Symplectic Ensemble 5.2.4 Arbitrary Matrix Dimension 5.3 Riemann Geometry for Matrix Ensembles: Invariance of the Volume Element 5.3.1 Change of Variables on a Manifold 5.3.2 Geometry for Matrix Ensembles: Invariance of the Volume Element dN H 5.4 More of Riemann Geometry for Matrix Ensembles: Eigenvalue Distributions 5.5 Eigenvalue Distributions for the Non-standard Symmetry Classes 5.6 Level Spacing Distributions (Wigner Surmizes) 5.7 Average Level Density (GUE) 5.8 Dyson\'s Circular Ensembles 5.8.1 Circular Unitary Ensemble 5.8.2 COE and CSE 5.8.3 Poissonian Ensemble 5.9 Same Spectral Correlations in Circular and Gaussian Ensembles for N→∞ 5.10 Eigenvector Distributions 5.10.1 Single-Vector Density 5.10.2 Joint Density of Eigenvectors 5.11 Ergodicity of the Level Density 5.12 Asymptotic Level Spacing Distributions 5.13 Determinants as Gaussian Grassmann Integrals 5.14 Two-Point Correlations of the Level Density 5.14.1 Two-Point Correlator and Form Factor 5.14.2 Form Factor for the Poissonian Ensemble 5.14.3 Form Factor for the CUE 5.14.4 Form Factor for the COE 5.14.5 Form Factor for the CSE 5.15 Newton\'s Relations 5.15.1 Traces Versus Secular Coefficients 5.15.2 Solving Newton\'s Relations 5.16 Selfinversiveness and Riemann–Siegel Lookalike 5.17 Higher Correlations of the Level Density 5.17.1 Correlation and Cumulant Functions 5.17.2 Ergodicity of the CUE Form Factor 5.17.3 Ergodicity of the CUE Two-Point Correlator 5.17.4 Joint Density of Traces of Large CUE Matrices 5.18 Correlations of Secular Coefficients 5.19 Unfolding Spectra 5.20 Fidelity of Kicked Tops to Random-Matrix Theory 5.21 Problems References 6 Supersymmetry and Sigma Model for Random Matrices 6.1 Preliminaries 6.2 Semicircle Law for the Gaussian Unitary Ensemble 6.2.1 The Green Function and Its Average 6.2.2 An Aside: Complex Conjugation of Grassmann Variables 6.2.3 The GUE Average 6.2.4 Doing the Superintegral 6.2.5 Two Remaining Saddle-Point Integrals 6.3 Superalgebra 6.3.1 Motivation and Generators of Grassmann Algebras 6.3.2 Supervectors, Supermatrices 6.3.3 Superdeterminants 6.3.4 Complex Scalar Product, Hermitian and Unitary Supermatrices 6.3.5 Diagonalizing Supermatrices 6.4 Superintegrals 6.4.1 Some Bookkeeping for Ordinary Gaussian Integrals 6.4.2 Recalling Grassmann Integrals 6.4.3 Gaussian Superintegrals 6.4.4 Some Properties of General Superintegrals 6.4.5 Integrals over Supermatrices, Parisi–Sourlas–Efetov–Wegner Theorem 6.4.6 Asymptotic Analysis of SuSy Integrals: Massive and Zero Modes 6.5 The Semicircle Law Revisited 6.6 The Two-Point Function of the Gaussian Unitary Ensemble 6.6.1 Generating Function 6.6.2 Unitarity vs Pseudo-Unitarity and Superanalytic Hubbard-Stratonovich Transformation 6.6.3 Efetov\'s Sigma Model 6.6.4 Rational Parametrization 6.7 Two-Point Functions of the Circular Ensembles 6.7.1 Generating Function 6.8 Zero Dimensional Sigma Model for the CUE 6.8.1 Color-Flavor Transformation 6.8.2 The Q Manifold 6.8.3 Riemann Geometry for Supermatrix Ensembles: Flat Measure d(Q)=d(Z,Z̃) 6.8.4 Proof of the Color-Flavor Transformation (6.8.2) 6.8.5 Evaluation of the Generating Function and the Two-Point Correlator for the CUE 6.8.6 Evaluation of the Grassmann Integral G 6.9 The Zero Dimensional Sigma Model for COE and CSE 6.10 Universality of Spectral Fluctuations: Non-GaussianEnsembles 6.10.1 Delta Functions of Grassmann Variables 6.10.2 Generating Function 6.11 Problems References 7 Ballistic Sigma Model for Individual Unitary Maps and Graphs 7.1 Preliminaries 7.2 Generation Function for the Two-Point Correlator 7.3 Reduction to the Zero Dimensional Sigma Model and Condition of Validity 7.4 Perturbative Account of Fluctuations 7.4.1 Fluctuations on the Q Manifold 7.4.2 Small Parameters 7.4.3 Semiclassical Limit 7.4.4 Conditions for Universal Behavior 7.5 Quantum Graphs 7.5.1 Directed Graphs and Their Spectra 7.5.2 The Sigma Model Approach to Spectral Statistics References 8 Quantum Localization 8.1 Preliminaries 8.2 Localization in Anderson\'s Hopping Model 8.3 The Kicked Rotator as a Variant of Anderson\'s Model 8.4 Lloyd\'s Model 8.5 The Classical Diffusion Constant as the Quantum Localization Length 8.6 Absence of Localization for the Kicked Top 8.7 The Rotator as a Limiting Case of the Top 8.8 Banded Random Matrices 8.8.1 Banded Matrices Modelling Thick Wires 8.8.2 Inverse Participation Ratio and Localization Length 8.8.3 Sigma Model 8.8.4 Implementing the One Dimensional Sigma Model 8.9 Sigma Model for the Kicked Rotor 8.9.1 A Rotor Without Time Reversal Invariance 8.9.2 Inverse Participation Ratio 8.9.3 Sigma Model 8.9.4 Slow Modes 8.10 Problems References 9 Classical Hamiltonian Chaos 9.1 Preliminaries 9.2 Phase Space, Hamilton\'s Equations and All That 9.3 Action as a Generating Function 9.4 Linearized Flow and Its Jacobian Matrix 9.5 Liouville Picture 9.6 Symplectic Structure 9.7 Lyapunov Exponents 9.8 Stretching Factors and Local Stretching Rates 9.9 Poincaré Map 9.10 Stroboscopic Maps of Periodically Driven Systems 9.11 Varieties of Chaos; Mixing and Effective Equilibration 9.12 The Sum Rule of Hannay and Ozorio de Almeida 9.12.1 Maps 9.12.2 Flows 9.13 Propagator and Zeta Function 9.14 Exponential Stability of the Boundary Value Problem 9.15 Sieber-Richter Self-Encounter and Partner Orbit 9.15.1 Non-technical Discussion 9.15.2 Quantitative Discussion of 2-Encounters 9.16 l-Encounters and Orbit Bunches 9.17 Densities of Arbitrary Encounter Sets 9.18 Concluding Remarks 9.19 Problems References 10 Semiclassical Roles for Classical Orbits 10.1 Preliminaries 10.2 Van Vleck Propagator 10.2.1 Maps 10.2.2 Flows 10.3 Gutzwiller\'s Trace Formula 10.3.1 Maps 10.3.2 Flows 10.3.3 Weyl\'s Law 10.3.4 Limits of Validity and Outlook 10.4 Lagrangian Manifolds and Maslov Theory 10.4.1 Lagrangian Manifolds 10.4.2 Elements of Maslov Theory 10.4.3 Maslov Indices as Winding Numbers 10.5 Riemann-Siegel Look-Alike 10.6 Spectral Two-Point Correlator 10.6.1 Real and Complex Correlator 10.6.2 Local Energy Average 10.6.3 Generating Function 10.6.4 Periodic-Orbit Representation 10.7 Diagonal Approximation 10.7.1 Unitary Class 10.7.2 Orthogonal Class 10.8 Off-Diagonal Contributions, Unitary Symmetry Class 10.8.1 Structures of Pseudo-Orbit Quadruplets 10.8.2 Diagrammatic Rules 10.8.3 Example of Structure Contributions: A Single 2-Encounter 10.8.4 Cancellation of All Encounter Contributionsfor the Unitary Class 10.9 Semiclassical Construction of a Sigma Model, Unitary Symmetry Class 10.9.1 Matrix Elements for Ports and Contraction Lines for Links 10.9.2 Wick\'s Theorem and Link Summation 10.9.3 Signs 10.9.4 Proof of Contraction Rules, Unitary Case 10.9.5 Emergence of a Sigma Model 10.10 Semiclassical Construction of a Sigma Model, Orthogonal Symmetry Class 10.10.1 Structures 10.10.2 Leading-Order Contributions 10.10.3 Symbols for Ports and Contraction Lines for Links 10.10.4 Gauss and Wick 10.10.5 Signs 10.10.6 Proof of Contraction Rules, Orthogonal Case 10.10.7 Sigma Model 10.11 Outlook 10.12 Mixed Phase Space 10.13 Problems References 11 Level Dynamics 11.1 Preliminaries 11.2 Fictitious Particles (Pechukas-Yukawa Gas) 11.3 Conservation Laws 11.4 Intermultiplet Crossings 11.5 Level Dynamics for Classically Integrable Dynamics 11.6 Two-Body Collisions 11.7 Ergodicity of Level Dynamics and Universality of Spectral Fluctuations 11.7.1 Ergodicity 11.7.2 Collision Time 11.7.3 Universality 11.8 Equilibrium Statistics 11.9 Random-Matrix Theory as Equilibrium Statistical Mechanics 11.9.1 General Strategy 11.9.2 A Typical Coordinate Integral 11.9.3 Influence of a Typical Constant of the Motion 11.9.4 The General Coordinate Integral 11.9.5 Concluding Remarks 11.10 Dynamics of Rescaled Energy Levels 11.11 Level Curvature Statistics 11.12 Level Velocity Statistics 11.13 Dyson\'s Brownian-Motion Model 11.14 Local and Global Equilibrium in Spectra 11.15 Problems References 12 Dissipative Systems 12.1 Preliminaries 12.2 Hamiltonian Embeddings 12.3 Time-Scale Separation for Probabilities and Coherences 12.4 Dissipative Death of Quantum Recurrences 12.5 Complex Energies and Quasi-Energies 12.6 Different Degrees of Level Repulsion for Regular and Chaotic Motion 12.7 Poissonian Random Process in the Plane 12.8 Ginibre\'s Ensemble of Random Matrices 12.8.1 Normalizing the Joint Density 12.8.2 The Density of Eigenvalues 12.8.3 The Reduced Joint Densities 12.8.4 The Spacing Distribution 12.9 General Properties of Generators 12.10 Universality of Cubic Level Repulsion 12.10.1 Antiunitary Symmetries 12.10.2 Microreversibility 12.11 Dissipation of Quantum Localization 12.11.1 Zaslavsky\'s Map 12.11.2 Damped Rotator 12.11.3 Destruction of Localization 12.12 Problems References Index