دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Walter Wilcox
سری: Textbook Series in Physical Sciences
ISBN (شابک) : 1138090417, 9781138090415
ناشر: CRC Press
سال نشر: 2018
تعداد صفحات: 601
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Quantum Principles and Particles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و ذرات کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی مقدمه ای منحصر به فرد برای مکانیک کوانتومی ارائه می دهد که به تدریج از مکانیک کوانتومی ابتدایی به جنبه های فیزیک ذرات پیشرفت می کند. ویرایش دوم شامل یک فصل جدید در فرآیندهای وابسته به زمان، علاوه بر بسیاری از مشکلات جدید و تصاویر بهبود یافته است.
This textbook offers a unique introduction to quantum mechanics, progressing gradually from elementary quantum mechanics to aspects of particle physics. The second edition include a new chapter on time-dependent processes, in addition to many new problems and improved illustrations.
Cover Half Title Series Page Title Page Copyright Page Dedication Page Contents Preface to the Second Edition Preface to the First Edition Section I: Quantum Principles 1: Perspective and Principles 1.1 Prelude to Quantum Mechanics 1.2 Stern–Gerlach Experiment 1.3 Idealized Stern–Gerlach Results 1.4 Classical Model Attempts 1.5 Wave Functions for Two-Physical-Outcomes Cases 1.6 Measurement Symbols and Completeness 1.7 Process Diagrams and Operator Properties 1.8 Operator Reformulation 1.9 Operator Rotation 1.10 Bra–Ket Notation/Basis States 1.11 Transition Amplitudes 1.12 Three-Magnet Setup Example—Coherence 1.13 Hermitian Conjugation 1.14 Unitary Operators 1.15 A Very Special Operator 1.16 Matrix Representations 1.17 Matrix Wave Function Recovery 1.18 Expectation Values 1.19 Wrap-Up Problems 2: Particle Motion in One Dimension 2.1 Photoelectric Effect 2.2 Compton Effect 2.3 Uncertainty Relation for Photons 2.4 Stability of Ground States 2.5 Bohr Model 2.6 Fourier Transform and Uncertainty Relations 2.7 Schrödinger Equation 2.8 Schrödinger Equation Example 2.9 Dirac Delta Functions 2.10 Wave Functions and Probability 2.11 Probability Current 2.12 Time Separable Solutions 2.13 Completeness for Particle States 2.14 Particle Operator Properties 2.15 Operator Rules 2.16 Time Evolution and Expectation Values 2.17 Wrap-Up Problems 3: Some One-Dimensional Solutions to the Schrödinger Equation 3.1 Introduction 3.2 The Infinite Square Well: Differential Solution 3.3 The Infinite Square Well: Operator Solution 3.4 The Finite Potential Barrier Step Potential 3.5 The Harmonic Oscillator 3.6 The Attractive Kronig–Penney Model 3.7 Bound State and Scattering Solutions Problems 4: Hilbert Space and Unitary Transformations 4.1 Introduction and Notation 4.2 Inner and Outer Operator Products 4.3 Operator–Matrix Relationship 4.4 Hermitian Operators and Eigenkets 4.5 Gram–Schmidt Orthogonalization Process 4.6 Compatible Operators Theorem 4.7 Uncertainty Relations and Incompatible Operators 4.8 Simultaneously Measureable Operators 4.9 Unitary Transformations and Change of Basis 4.10 Coordinate Displacements and Unitary Transformations 4.11 Schrödinger and Heisenburg Pictures of Time Evolution 4.12 Free Gaussian Wave Packet in the Heisenberg Picture 4.13 Potentials and the Ehrenfest Theorem Problems 5: Three Static Approximation Methods 5.1 Introduction 5.2 Time-Independent Perturbation Theory 5.3 Examples of Time-Independent Perturbation Theory 5.4 Aspects of Degenerate Perturbation Theory 5.5 WKB Semiclassical Approximation 5.6 Use of the WKB Approximation in Barrier Penetration 5.7 Use of the WKB Approximation in Bound States 5.8 Variational Methods Problems 6: Generalization to Three Dimensions 6.1 Cartesian Basis States and Wave Functions in Three Dimensions 6.2 Position/Momentum Eigenket Generalization 6.3 Example: Three-Dimensional Infinite Square Well 6.4 Spherical Basis States 6.5 Orbital Angular Momentum Operator 6.6 Effect of Angular Momentum on Basis States 6.7 Energy Eigenvalue Equation and Angular Momentum 6.8 Complete Set of Observables for the Radial Schrödinger Equation 6.9 Specification of Angular Momentum Eigenstates 6.10 Angular Momentum Eigenvectors and Spherical Harmonics 6.11 Completeness and Other Properties of Spherical Harmonics 6.12 Radial Eigenfunctions Problems Section II—Quantum Particles 7: The Three-Dimensional Radial Equation 7.1 Recap of the Situation 7.2 The Free Particle 7.3 The Infinite Spherical Well Potential 7.4 The “Deuteron 7.5 The Coulomb Potential: Initial Considerations 7.6 The Coulomb Potential: 2-D Harmonic Oscillator Comparison 7.7 The Confined Coulombic Model Problems 8: Addition of Angular Momenta 8.1 General Angular-Momentum Eigenstate Properties 8.2 Combining Angular Momenta for Two Systems 8.3 Explicit Example of Adding Two Spin-1/2 Systems 8.4 Explicit Example of Adding Orbital Angular Momentum and Spin 1/2 8.5 Hydrogen Atom and the Choice of Basis States 8.6 Hydrogen Atom and Perturbative Energy Shifts Problems 9: Spin and Statistics 9.1 The Connection between Spin and Statistics 9.2 Building Wave Functions with Identical Particles 9.3 Particle Occupation Basis 9.4 More on Fermi–Dirac Statistics 9.5 Interaction Operator and Feynman Diagrams 9.6 Implications of Detailed Balance 9.7 Density of States Expressions 9.8 Creating and Destroying Photons 9.9 Maxwell–Boltzmann Statistics 9.10 Bose–Einstein Statistics 9.11 Fermi–Dirac Statistics 9.12 The Hartree–Fock Equations Problems 10: Time-Dependent Systems 10.1 Time-Dependent Potentials 10.2 Sudden and Slow Quantum Transitions 10.3 Two-State Problems 10.4 The Berry Phase 10.5 Magnetic Spin Resonance and the Geometrical Phase 10.6 The Aharonov–Bohm Effect 10.7 Time-Dependent Perturbation Theory and Transitions 10.8 Applications of Fermi’s Golden Rule 10.9 Exponential Time Decay and Decay Widths Problems 11: Quantum Particle Scattering 11.1 Introduction 11.2 The One-Dimensional Integral Schrödinger Equation 11.3 Reflection and Transmission Amplitudes 11.4 One-Dimensional Delta-Function Scattering 11.5 Step-Function Potential Scattering 11.6 The Born Series 11.7 The Three-Dimensional Integral Schrödinger Equation 11.8 The Helmholtz Equation and Plane Waves 11.9 Cross Sections and the Scattering Amplitude 11.10 Scattering Phase Shifts 11.11 Finite-Range Potential Scattering 11.12 The Three-Dimensional Born Series 11.13 Identical Particle Scattering 11.14 Proton–Proton Scattering Problems 12: Connecting to the Standard Model 12.1 Discrete Symmetries 12.2 Parity 12.3 Time Reversal 12.4 Charge Conjugation 12.5 Particle Primer 12.6 Particle Interactions 12.7 Quantum Electrodynamics 12.8 Quantum Chromodynamics 12.9 Weak Interactions 12.10 Supersymmetry 12.11 Superstrings 12.12 Postlude 12.13 Helpful Books on Particle and String Physics Problems Appendix A: Notation Comments and Comparisons Appendix B: Lattice Models Appendix C: 2-D Harmonic Oscillator Wave Function Normalization Appendix D: Allowed Standard Model Interactions Appendix E: The Ising Model and More Appendix F: Weak Flavor Mixing Appendix G: Quantum Computing Index