دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Har/Cdr
نویسندگان: Kenichi Konishi. Giampiero Paffuti
سری:
ISBN (شابک) : 0199560269, 9780199560264
ناشر: Oxford University Press
سال نشر: 2009
تعداد صفحات: 802
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Quantum Mechanics: A New Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک کوانتومی: مقدمه ای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این یک کتاب درسی مقدماتی مدرن و نسبتاً جامع در مورد مکانیک کوانتومی است. با وجود اهمیت روزافزون این موضوع در علم، فناوری و زندگی روزمره معاصر، قصد دارد فقدان چنین کتابی را امروز اصلاح کند. این کتاب با ارائه واضح و آموزشی خود، و با مثالهای فراوانی که به بحث گذاشته شده و مسائل به صورت تحلیلی یا عددی حل شدهاند، یک کتاب درسی منحصر به فرد و لذتبخش در زمینه مکانیک کوانتومی است که برای دانشجویان فیزیک، محققان و معلمان مفید است.
This is a modern, and relatively comprehensive introductory textbook on Quantum Mechanics. It is intended to correct the lack of such a book today, in spite of the ever-increasing importance of the subject in contemporary science, technology, and everyday life. With its clear, pedagogical presentation, and with many examples discussed and problems solved both analytically or with numerical methods, the book is a unique and enjoyable textbook on Quantum Mechanics, useful for physics students, researchers and teachers alike.
Cover Half-title Title Copyright Preface Contents I Basic quantum mechanics 1 Introduction 1.1 The quantum behavior of the electron 1.1.1 Diffraction and interference—visualizing the quantum world 1.1.2 The stability and identity of atoms 1.1.3 Tunnel effects 1.2 The birth of quantum mechanics 1.2.1 From the theory of specific heat to Planck’s formula 1.2.2 The photoelectric effect 1.2.3 Bohr’s atomic model 1.2.4 The Bohr–Sommerfeld quantization condition; de Broglie’s wave Further reading Guide to the Supplements Problems Numerical analyses 2 Quantum mechanical laws 2.1 Quantum states 2.1.1 Composite systems 2.1.2 Photon polarization and the statistical nature of quantum mechanics 2.2 The uncertainty principle 2.3 The fundamental postulate 2.3.1 The projection operator and state vector reduction 2.3.2 Hermitian operators 2.3.3 Products of operators, commutators, and compatible observables 2.3.4 The position operator, the momentum operator, fundamental commutators, and Heisenberg’s relation 2.3.5 Heisenberg’s relations 2.4 The Schrödinger equation 2.4.1 More about the Schrödinger equations 2.4.2 The Heisenberg picture 2.5 The continuous spectrum 2.5.1 The delta function 2.5.2 Orthogonality 2.5.3 The position and momentum eigenstates; momentum as a translation operator 2.6 Completeness Problems Numerical analyses 3 The Schrödinger equation 3.1 General properties 3.1.1 Boundary conditions 3.1.2 Ehrenfest’s theorem 3.1.3 Current density and conservation of probability 3.1.4 The virial and Feynman–Hellman theorems 3.2 One-dimensional systems 3.2.1 The free particle 3.2.2 Topologically nontrivial space 3.2.3 Special properties of one-dimensional Schrödinger equations 3.3 Potential wells 3.3.1 Infinitely deep wells (walls) 3.3.2 The finite square well 3.3.3 An application 3.4 The harmonic oscillator 3.4.1 The wave function and Hermite polynomials 3.4.2 Creation and annihilation operators 3.5 Scattering problems and the tunnel effect 3.5.1 The potential barrier and the tunnel effect 3.5.2 The delta function potential 3.5.3 General aspects of the scattering problem 3.6 Periodic potentials 3.6.1 The band structure of the energy spectrum 3.6.2 Analysis Guide to the Supplements Problems Numerical analyses 4 Angular momentum 4.1 Commutation relations 4.2 Space rotations 4.3 Quantization 4.4 The Stern–Gerlach experiment 4.5 Spherical harmonics 4.6 Matrix elements of J 4.6.1 Spin- ½ and Pauli matrices 4.7 The composition rule 4.7.1 The Clebsch–Gordan coefficients 4.8 Spin 4.8.1 Rotation matrices for spin ½ Guide to the Supplements Problems 5 Symmetry and statistics 5.1 Symmetries in Nature 5.2 Symmetries in quantum mechanics 5.2.1 The ground state and symmetry 5.2.2 Parity (P) 5.2.3 Time reversal 5.2.4 The Galilean transformation 5.2.5 The Wigner–Eckart theorem 5.3 Identical particles: Bose–Einstein and Fermi–Dirac statistics 5.3.1 Identical bosons 5.3.2 Identical fermions and Pauli’s exclusion principle Guide to the Supplements Problems 6 Three-dimensional problems 6.1 Simple three-dimensional systems 6.1.1 Reduced mass 6.1.2 Motion in a spherically symmetric potential 6.1.3 Spherical waves 6.2 Bound states in potential wells 6.3 The three-dimensional oscillator 6.4 The hydrogen atom Guide to the Supplements Problems Numerical analyses 7 Some finer points of quantum mechanics 7.1 Representations 7.1.1 Coordinate and momentum representations 7.2 States and operators 7.2.1 Bra and ket; abstract Hilbert space 7.3 Unbounded operators 7.3.1 Self-adjoint operators 7.4 Unitary transformations 7.5 The Heisenberg picture 7.5.1 The harmonic oscillator in the Heisenberg picture 7.6 The uncertainty principle 7.7 Mixed states and the density matrix 7.7.1 Photon polarization 7.8 Quantization in general coordinates Further reading Guide to the Supplements Problems 8 Path integrals 8.1 Green functions 8.2 Path integrals 8.2.1 Derivation 8.2.2 Mode expansion 8.2.3 Feynman graphs 8.2.4 Back to ordinary (Minkowski) time 8.2.5 Tunnel effects and instantons Further reading Numerical analyses II Approximation methods 9 Perturbation theory 9.1 Time-independent perturbations 9.1.1 Degenerate levels 9.1.2 The Stark effect on the n = 2 level of the hydrogen atom 9.1.3 Dipole interactions and polarizability 9.2 Quantum transitions 9.2.1 Perturbation lasting for a finite interval 9.2.2 Periodic perturbation 9.2.3 Transitions in a discrete spectrum 9.2.4 Resonant oscillation between two levels 9.3 Transitions in the continuum 9.3.1 State density 9.4 Decays 9.5 Electromagnetic transitions 9.5.1 The dipole approximation 9.5.2 Absorption of radiation 9.5.3 Induced (or stimulated) emission 9.5.4 Spontaneous emission 9.6 The Einstein coefficients Guide to the Supplements Problems Numerical analyses 10 Variational methods 10.1 The variational principle 10.1.1 Lower limits 10.1.2 Truncated Hilbert space 10.2 Simple applications 10.2.1 The harmonic oscillator 10.2.2 Helium: an elementary variational calculation 10.2.3 The virial theorem 10.3 The ground state of the helium Guide to the Supplements Problems Numerical analyses 11 The semi-classical approximation 11.1 The WKB approximation 11.1.1 Connection formulas 11.2 The Bohr–Sommerfeld quantization condition 11.2.1 Counting the quantum states 11.2.2 Potentials defined for x > 0 only 11.2.3 On the meaning of the limit _ ? 0 11.2.4 Angular variables 11.2.5 Radial equations 11.2.6 Examples 11.3 The tunnel effect 11.3.1 The double well 11.3.2 The semi-classical treatment of decay processes 11.3.3 The Gamow–Siegert theory 11.4 Phase shift Further reading Guide to the Supplements Problems Numerical analyses III Applications 12 Time evolution 12.1 General features of time evolution 12.2 Time-dependent unitary transformations 12.3 Adiabatic processes 12.3.1 The Landau–Zener transition 12.3.2 The impulse approximation 12.3.3 The Berry phase 12.3.4 Examples 12.4 Some nontrivial systems 12.4.1 A particle within moving walls 12.4.2 Resonant oscillations 12.4.3 A particle encircling a solenoid 12.4.4 A ring with a defect 12.5 The cyclic harmonic oscillator: a theorem 12.5.1 Inverse linear variation of the frequency 12.5.2 The Planck distribution inside an oscillating cavity 12.5.3 General power-dependent frequencies 12.5.4 Exponential dependence 12.5.5 Creation and annihilation operators; coupled oscillators Guide to the Supplements Problems Numerical analyses 13 Metastable states 13.1 Green functions 13.1.1 Analytic properties of the resolvent 13.1.2 Free particles 13.1.3 The free Green function in general dimensions 13.1.4 Expansion in powers of HI 13.2 Metastable states 13.2.1 Formulation of the problem 13.2.2 The width of a metastable state; the mean halflifetime 13.2.3 Formal treatment 13.3 Examples 13.3.1 Discrete–continuum coupling 13.4 Complex scale transformations 13.4.1 Analytic continuation 13.5 Applications and examples 13.5.1 Resonances in helium 13.5.2 The potential Vor2e-r 13.5.3 The unbounded potential; the Lo Surdo–Stark effect Further reading Problems Numerical analyses 14 Electromagnetic interactions 14.1 The charged particle in an electromagnetic field 14.1.1 Classical particles 14.1.2 Quantum particles in electromagnetic fields 14.1.3 Dipole and quadrupole interactions 14.1.4 Magnetic interactions 14.1.5 Relativistic corrections: LS coupling 14.1.6 Hyperfine interactions 14.2 The Aharonov–Bohm effect 14.2.1 Superconductors 14.3 The Landau levels 14.3.1 The quantum Hall effect 14.4 Magnetic monopoles Guide to the Supplements Problems Numerical analyses 15 Atoms 15.1 Electronic configurations 15.1.1 The ionization potential 15.1.2 The spectrum of alkali metals 15.1.3 X rays 15.2 The Hartree approximation 15.2.1 Self-consistent fields and the variational principle 15.2.2 Some results 15.3 Multiplets 15.3.1 Structure of the multiplets 15.4 Slater determinants 15.5 The Hartree–Fock approximation 15.5.1 Examples 15.6 Spin–orbit interactions 15.6.1 The hydrogen atom 15.7 Atoms in external electric fields 15.7.1 Dipole interaction and polarizability 15.7.2 Quadrupole interactions 15.8 The Zeeman effect 15.8.1 The Zeeman effect in quantum mechanics Further reading Guide to the Supplements Problems Numerical analyses 16 Elastic scattering theory 16.1 The cross section 16.2 Partial wave expansion 16.2.1 The semi-classical limit 16.3 The Lippman–Schwinger equation 16.4 The Born approximation 16.5 The eikonal approximation 16.6 Low-energy scattering 16.7 Coulomb scattering: Rutherford’s formula 16.7.1 Scattering of identical particles Further reading Guide to the Supplements Problems Numerical analyses 17 Atomic nuclei and elementary particles 17.1 Atomic nuclei 17.1.1 General features 17.1.2 Isospin 17.1.3 Nuclear forces, pion exchange, and the Yukawa potential 17.1.4 Radioactivity 17.1.5 The deuteron and two-nucleon forces 17.2 Elementary particles: the need for relativistic quantum field theories 17.2.1 The Klein–Gordon and Dirac equations 17.2.2 Quantization of the free Klein–Gordon fields 17.2.3 Quantization of the free Dirac fields and the spin– statistics connection 17.2.4 Causality and locality 17.2.5 Self-interacting scalar fields 17.2.6 Non-Abelian gauge theories: the Standard Model Further reading IV Entanglement and Measurement 18 Quantum entanglement 18.1 The EPRB Gedankenexperiment and quantum entanglement 18.2 Aspect’s experiment 18.3 Entanglement with more than two particles 18.4 Factorization versus entanglement 18.5 A measure of entanglement: entropy Further reading 19 Probability and measurement 19.1 The probabilistic nature of quantum mechanics 19.2 Measurement and state preparation: from PVM to POVM 519 19.3 Measurement “problems” 19.3.1 The EPR “paradox” 19.3.2 Measurement as a physical process: decoherence and the classical limit 19.3.3 Schrödinger’s cat 19.3.4 The fundamental postulate versus Schr¨odinger’s equation 19.3.5 Is quantum mechanics exact? 19.3.6 Cosmology and quantum mechanics 19.4 Hidden-variable theories 19.4.1 Bell’s inequalities 19.4.2 The Kochen–Specker theorem 19.4.3 “Quantumnon-locality” versus “locally causal theories” or “local realism” Further reading Guide to the Supplements V Supplements 20 Supplements for Part I 20.1 Classical mechanics 20.1.1 The Lagrangian formalism 20.1.2 The Hamiltonian (canonical) formalism 20.1.3 Poisson brackets 20.1.4 Canonical transformations 20.1.5 The Hamilton–Jacobi equation 20.1.6 Adiabatic invariants 20.1.7 The virial theorem 20.2 The Hamiltonian of electromagnetic radiation field in the vacuum 20.3 Orthogonality and completeness in a system with a onedimensional delta function potential 20.3.1 Orthogonality 20.3.2 Completeness 20.4 The S matrix; the wave packet description of scattering 20.4.1 The wave packet description 20.5 Legendre polynomials 20.6 Groups and representations 20.6.1 Group axioms; some examples 20.6.2 Group representations 20.6.3 Lie groups and Lie algebras 20.6.4 The U(N) group and the quarks 20.7 Formulas for angular momentum 20.8 Young tableaux 20.9 N-particle matrix elements 20.10 The Fock representation 20.10.1 Bosons 20.10.2 Fermions 20.11 Second quantization 20.12 Supersymmetry in quantum mechanics 20.13 Two- and three-dimensional delta function potentials 20.13.1 Bound states 20.13.2 Self-adjoint extensions 20.13.3 The two-dimensional delta-function potential: a quantum anomaly 20.14 Superselection rules 20.15 Quantum representations 20.15.1 Weyl’s commutation relations 20.15.2 Von Neumann’s theorem 20.15.3 Angular variables 20.15.4 Canonical transformations 20.15.5 Self-adjoint extensions 20.16 Gaussian integrals and Feynman graphs 21 Supplements for Part II 21.1 Supplements on perturbation theory 21.1.1 Change of boundary conditions 21.1.2 Two-level systems 21.1.3 Van der Waals interactions 21.1.4 The Dalgarno–Lewis method 21.2 The fine structure of the hydrogen atom 21.2.1 A semi-classical model for the Lamb shift 21.3 Hydrogen hyperfine interactions 21.4 Divergences of perturbative series 21.4.1 Perturbative series at large orders: the anharmonic oscillator 21.4.2 The origin of the divergence 21.4.3 The analyticity domain 21.4.4 Asymptotic series 21.4.5 The dispersion relation 21.4.6 The perturbative–variational approach 21.5 The semi-classical approximation in general systems 21.5.1 Introduction 21.5.2 Keller quantization 21.5.3 Integrable systems 21.5.4 Examples 21.5.5 Caustics 21.5.6 The KAM theorem and quantization 22 Supplements for Part III 22.1 The K0–K0 system and CP violation 22.2 Level density 22.2.1 The free particle 22.2.2 g(E) and the partition function 22.2.3 g(E) and short-distance behavior 22.2.4 Level density and scattering 22.2.5 The stabilization method 22.3 Thomas precession 22.4 Relativistic corrections in an external field 22.5 The Hamiltonian for interacting charged particles 22.5.1 The interaction potentials 22.5.2 Spin-dependent interactions 22.5.3 The quantum Hamiltonian 22.5.4 Electron–electron interactions 22.5.5 Electron–nucleus interactions 22.5.6 The 1/M corrections 22.6 Quantization of electromagnetic fields 22.6.1 Matrix elements 22.7 Atoms 22.7.1 The Thomas–Fermi approximation 22.7.2 The Hartree approximation 22.7.3 Slater determinants and matrix elements 22.7.4 Hamiltonians for closed shells 22.7.5 Mean energy 22.7.6 Hamiltonians for incomplete shells 22.7.7 Eigenvalues of H 22.7.8 The elementary theory of multiplets 22.7.9 The Hartree–Fock equations 22.7.10The role of Lagrange multipliers 22.7.11 Koopman’s theorem 22.8 H2+ 22.9 The Gross–Pitaevski equation 22.10 The semi-classical scattering amplitude 22.10.1 Caustics and rainbows 23 Supplements for Part IV 23.1 Speakable and unspeakable in quantum mechanics 23.1.1 Bell’s toy model for hidden variables 23.1.2 Bohm’s pilot waves 23.1.3 The many-worlds interpretation 23.1.4 Spontaneous wave function collapse 24 Mathematical appendices and tables 24.1 Mathematical appendices 24.1.1 Laplace’s method 24.1.2 The saddle-point method 24.1.3 Airy functions References Index