دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Andreas Wichert
سری:
ISBN (شابک) : 9781032448978, 9781003374404
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 326
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Quantum Artificial Intelligence with Qiskit به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی کوانتومی با Qiskit نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی منسجم از حوزه QAI ارائه میکند و ابزارهایی را برای خوانندگان فراهم میکند تا برنامههای کوانتومی را روی دستگاههایی که مانند رایانه لپتاپ در دسترس هستند، ایجاد و دستکاری کنند.
This book provides a cohesive overview of the field of QAI, providing the tools for readers to create and manipulate quantum programs on devices as accessible as a laptop computer.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Author CHAPTER 1: Artificial Intelligence 1.1. A SHORT HISTORY OF AI 1.1.1. Cybernetics 1.1.2. Symbolic Artificial Intelligence 1.1.3. Connectionist Movement 1.1.4. Deep Learning 1.1.5. Quantum Artificial Intelligence 1.2. SYMBOLICAL ARTIFICIAL INTELLIGENCE 1.2.1. Bits 1.2.2. Rules and Operators 1.2.3. Production Systems 1.2.4. Tree Search 1.2.5. Informed Tree Search 1.3. MACHINE LEARNING 1.3.1. Vector Representation 1.3.2. Nearest Neighbor 1.3.3. Associative Memory 1.3.4. Artificial Neuron 1.3.5. Perceptron 1.3.6. Support Vector Machine 1.3.7. Support Vector Machine as a Kernel Machine 1.3.8. Deep Learning CHAPTER 2: Quantum Physics and Quantum Computation 2.1. QUANTUM MEASUREMENT 2.1.1. Interpretations of Quantum Mechanics 2.2. PRINCIPLES OF QUANTUM COMPUTATION 2.2.1. Qubits 2.2.2. Representation 2.2.3. Linear Operators 2.3. COMPOUND SYSTEMS 2.4. MEASUREMENT 2.5. COMPUTATION WITH ONE QUBIT 2.6. COMPUTATION WITH M QUBIT 2.6.1. Matrix Representation of Serial and Parallel Operations 2.7. ENTANGLEMENT 2.8. CLONING 2.9. PHASE KICK-BACK 2.10. QUANTUM BOOLEAN GATES CHAPTER 3: Qiskit 3.1. SOFTWARE DEVELOPMENT KIT 3.2. INSTALLATION 3.3. BACKEND SIMULATOR FUNCTIONS 3.4. COMPATIBILITY 3.5. EXAMPLE: QUANTUM COIN 3.5.1. Statevector Evaluation 3.5.2. Qasm Simulator Evaluation 3.6. MATRIX REPRESENTATION 3.7. QUANTUM CIRCUITS 3.7.1. Un-computing 3.7.2. General Multi-Controlled X Gate 3.7.3. OR Operation 3.8. DEUTSCH ALGORITHM 3.9. DEUTSCH ALGORITHM ON A REAL QUANTUM COMPUTER CHAPTER 4: Quantum Gates 4.1. BOOLEAN ALGEBRA AND THE QUANTUM GATES 4.1.1. Identity Gate – I 4.1.2. NOT Gate, Pauli X Gate – X 4.1.3. Toffoli Gate – ccX 4.1.4. Controlled NOT Gate – cX 4.1.5. SWAP Gate – SWAP 4.1.6. Controlled SWAP Gate – cS 4.2. GATES FOR ONE QUBIT 4.2.1. Clifford Gates for One Qubit 4.2.2. Pauli Y Gate – Y 4.2.3. Pauli Z Gate – Z 4.2.4. S Gate – S 4.2.5. Sdag Gate – S† 4.3. ROTATION GATES 4.3.1. T Gate – T 4.3.2. T† Gate – T† 4.4. PARAMETERIZED ROTATION GATES 4.4.1. RX Gate – RX 4.4.2. RY Gate – RY 4.4.3. RZ Gate – RZ 4.4.4. U Gate – U 4.4.5. Phase Gate – P 4.5. CONTROLLED U GATES 4.5.1. Controlled Phase Gate 4.5.2. Controlled Hadamard Gate – cH 4.6. UNIVERSALITY 4.7. QUANTUM CIRCUITS CHAPTER 5: Grover’s Amplification 5.1. SEARCH AND QUANTUM ORACLE 5.1.1. Quantum Oracle 5.2. HOUSEHOLDER REFLECTION 5.3. GROVER’S AMPLIFICATION 5.3.1. Number of Iteration 5.3.2. Circuit Representation 5.4. NUMPY EXAMPLE WITH MATRIX NOTATION 5.5. DECOMPOSITION 5.6. QISKIT EXAMPLES 5.7. UN-COMPUTATION 5.8. GENERALIZATION OF ΛM FOR M QUBITS CHAPTER 6: SAT Problem 6.1. FORMULA SATISFIABILITY 6.2. SAT PROBLEM AND NP COMPLETE 6.3. SAT PROBLEM AND GROVER’S ALGORITHM 6.3.1. Quantum Boolean Circuit 6.3.2. Un-Computation 6.3.3. Grover’s Amplification 6.3.4. No Solution CHAPTER 7: Symbolic State Representation 7.1. BIT REPRESENTATION OF OBJECTS AND ATTRIBUTES 7.1.1. “What” and “Where” 7.2. TREE SEARCH AND THE PATH DESCRIPTORS 7.3. QUANTUM TREE SEARCH CHAPTER 8: Quantum Production System 8.1. PURE PRODUCTION SYSTEMS 8.1.1. Quantum Production Systems 8.2. EXAMPLE: SORTING A STRING 8.2.1. Quantum Production System for Sorting a String 8.2.2. Number of Iteration 8.3. COGNITIVE ARCHITECTURE 8.4. CONTROL FUNCTION CHAPTER 9: 3 Puzzle 9.1. 3 PUZZLE 9.2. REPRESENTATION 9.2.1. Rules and Trace 9.3. SEARCH OF DEPTH TWO 9.4. SEARCH DEPTH THREE 9.5. SEARCH DEPTH THREE WITH TWO ITERATIONS CHAPTER 10: 8 Puzzle 10.1. REPRESENTATION 10.2. NUMBER OF ITERATIONS CHAPTER 11: Blocks World 11.1. REPRESENTATION 11.1.1. Rules (Productions) 11.1.2. Oracle 11.1.3. Architecture 11.2. EXAMPLES 11.3. NUMBER OF ITERATIONS CHAPTER 12: Five Pennies Nim Game 12.1. QUANTUM CIRCUIT 12.1.1. Representation of Rules 12.1.2. Oracle 12.1.3. Search of Depth Two 12.2. LIMITATIONS OF QUANTUM TREE SEARCH CHAPTER 13: Basis Encoding of Binary Vectors 13.1. BINARY VECTORS 13.2. SUPERPOSITIONS OF BINARY PATTERNS 13.2.1. Storage Algorithm 13.2.2. Qiskit Example 13.3. ENTANGLEMENT OF BINARY PATTERNS 13.3.1. Qiskit Example 13.4. COMPARISON CHAPTER 14: Quantum Associative Memory 14.1. QUANTUM NEAREST NEIGHBOR 14.2. QUANTUM ASSOCIATIVE MEMORY (QuAM) 14.2.1. Non-Uniform Distribution 14.2.2. Ventura Martinez Trick 14.3. INPUT DESTRUCTION PROBLEM CHAPTER 15: Quantum Lernmatrix 15.1. LERNMATRIX 15.1.1. Learning and Retrieval 15.1.2. Storage Capacity 15.2. MONTE CARLO LERNMATRIX 15.3. QUANTUM COUNTING ONES 15.4. QUANTUM LERNMATRIX 15.4.1. Generalization 15.4.2. Example 15.4.3. Applying Trugenberger Amplification Several Times 15.4.4. Tree-Like Structures 15.5. CONCLUSION CHAPTER 16: Amplitude Encoding 16.1. AMPLITUDE ENCODING EXAMPLE 16.2. TOP-DOWN DIVIDE STRATEGY 16.2.1. Level 1 16.2.2. Level 2 16.2.3. Level 3 16.3. COMBINING STATES 16.3.1. Level 2 16.3.2. Level 3 16.4. QISKIT AMPLITUDE CODING 16.5. SWAP TEST 16.5.1. Example for Two-Dimensional Vectors 16.5.2. Example for Four-Dimensional Vectors CHAPTER 17: Quantum Kernels 17.1. QUANTUM KERNELS 17.2. QUANTUM KERNELS AND SWAP TEST 17.2.1. Example for Two-Dimensional Vectors 17.3. QUANTUM KERNELS AND INVERSION TEST 17.3.1. Example 17.3.2. Quantum Feature Maps 17.4. QUANTUM SUPPORT VECTOR MACHINE CHAPTER 18: qRAM 18.1. QUANTUM RANDOM ACCESS MEMORY 18.1.1. The Bucket Brigade Architecture of qRAM 18.1.2. Amplitude Coding CHAPTER 19: Quantum Fourier Transform 19.1. DISCRETE FOURIER TRANSFORM 19.2. QUANTUM FOURIER TRANSFORM 19.3. QFT DECOMPOSITION 19.3.1. QFT for Two qubits 19.3.2. QFT for Three qubits 19.3.3. QFT for Four qubits 19.3.4. QFT Costs 19.3.5. QFT CHAPTER 20: Phase Estimation 20.1. KITAEV’S PHASE ESTIMATION ALGORITHM 20.1.1. Example with T Gate 20.2. QUANTUM COUNTING 20.2.1. Example CHAPTER 21: Quantum Perceptron 21.1. COUNTING OF ONES WITH KITAEV’S PHASE ESTIMATION ALGORITHM 21.2. QUANTUM PERCEPTRON 21.3. SIMPLE EXAMPLE CHAPTER 22: HHL 22.1. QUANTUM ALGORITHM FOR LINEAR SYSTEMS OF EQUATIONS 22.2. ALGORITHM 22.2.1. Hamiltonian Simulation 22.2.2. Kitaev’s Phase Estimation 22.2.3. Conditioned Rotation 22.2.4. Un-Computation 22.2.5. Measurement 22.2.6. Obtaining the Solution 22.3. EXAMPLE 22.3.1. Kitaev’s Phase Estimation to Hamiltonian Simulation 22.3.2. Conditioned Rotation and Un-Computation 22.3.3. Obtaining the Solution 22.4. CONSTRAINTS CHAPTER 23: Hybrid Approaches − Variational Classification 23.1. VARIATIONAL CLASSIFICATION 23.1.1. Example 23.2. CROSS ENTROPY LOSS FUNCTION 23.2.1. Multi-Class Loss Function 23.3. SPSA OPTIMIZER 23.3.1. Qiskit Variational Quantum Classifier CHAPTER 24: Conclusion 24.1. EPILOGUE 24.2. FURTHER READING Bibliography Index