دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Yuxi (Hayden) Liu
سری:
ISBN (شابک) : 9781800209718
ناشر: Packt
سال نشر: 2020
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Python Machine Learning By Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین پایتون با مثال - نسخه سوم: ساخت سیستم های هوشمند با استفاده از Python، TensorFlow 2، PyTorch و scikit-learn نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آموزش ماشین پایتون به عنوان مثال، نسخه سوم به عنوان یک دروازه جامع به دنیای یادگیری ماشین (ML) عمل می کند. با شش فصل جدید، در مورد موضوعاتی از جمله توسعه موتور توصیه فیلم با Naïve Bayes، شناسایی چهره ها با ماشین بردار پشتیبان، پیش بینی قیمت سهام با شبکه های عصبی مصنوعی، دسته بندی تصاویر لباس با شبکه های عصبی کانولوشن، پیش بینی با توالی با استفاده از شبکه های عصبی تکراری، و اعمال نفوذ یادگیری تقویتی برای تصمیم گیری، این کتاب به طور قابل توجهی برای آخرین نیازهای سازمانی به روز شده است. در عین حال، این کتاب بینش عملی در مورد اصول کلیدی ML با برنامه نویسی پایتون ارائه می دهد. هایدن تخصص خود را برای نشان دادن پیاده سازی الگوریتم ها در پایتون، هم از ابتدا و هم با کتابخانه ها به کار می گیرد. هر فصل از طریق یک برنامه کاربردی که توسط صنعت پذیرفته شده است می گذرد. با کمک مثال های واقع گرایانه، درک درستی از مکانیک تکنیک های ML در زمینه هایی مانند تجزیه و تحلیل داده های اکتشافی، مهندسی ویژگی، طبقه بندی، رگرسیون، خوشه بندی و NLP به دست خواهید آورد. در پایان این کتاب ML Python، شما تصویر وسیعی از اکوسیستم ML به دست خواهید آورد و در بهترین شیوه های به کارگیری تکنیک های ML برای حل مشکلات به خوبی آشنا خواهید شد.
Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Cover Copyright Packt Page Contributors Table of Contents Preface Chapter 1: Getting Started with Machine Learning and Python An introduction to machine learning Understanding why we need machine learning Differentiating between machine learning and automation Machine learning applications Knowing the prerequisites Getting started with three types of machine learning A brief history of the development of machine learning algorithms Digging into the core of machine learning Generalizing with data Overfitting, underfitting, and the bias-variance trade-off Overfitting Underfitting The bias-variance trade-off Avoiding overfitting with cross-validation Avoiding overfitting with regularization Avoiding overfitting with feature selection and dimensionality reduction Data preprocessing and feature engineering Preprocessing and exploration Dealing with missing values Label encoding One-hot encoding Scaling Feature engineering Polynomial transformation Power transforms Binning Combining models Voting and averaging Bagging Boosting Stacking Installing software and setting up Setting up Python and environments Installing the main Python packages NumPy SciPy Pandas Scikit-learn TensorFlow Introducing TensorFlow 2 Summary Exercises Chapter 2: Building a Movie Recommendation Engine with Naïve Bayes Getting started with classification Binary classification Multiclass classification Multi-label classification Exploring Naïve Bayes Learning Bayes' theorem by example The mechanics of Naïve Bayes Implementing Naïve Bayes Implementing Naïve Bayes from scratch Implementing Naïve Bayes with scikit-learn Building a movie recommender with Naïve Bayes Evaluating classification performance Tuning models with cross-validation Summary Exercise References Chapter 3: Recognizing Faces with Support Vector Machine Finding the separating boundary with SVM Scenario 1 – identifying a separating hyperplane Scenario 2 – determining the optimal hyperplane Scenario 3 – handling outliers Implementing SVM Scenario 4 – dealing with more than two classes Scenario 5 – solving linearly non-separable problems with kernels Choosing between linear and RBF kernels Classifying face images with SVM Exploring the face image dataset Building an SVM-based image classifier Boosting image classification performance with PCA Fetal state classification on cardiotocography Summary Exercises Chapter 4: Predicting Online Ad Click-Through with Tree-Based Algorithms A brief overview of ad click-through prediction Getting started with two types of data – numerical and categorical Exploring a decision tree from the root to the leaves Constructing a decision tree The metrics for measuring a split Gini Impurity Information Gain Implementing a decision tree from scratch Implementing a decision tree with scikit-learn Predicting ad click-through with a decision tree Ensembling decision trees – random forest Ensembling decision trees – gradient boosted trees Summary Exercises Chapter 5: Predicting Online Ads Click-Through with Logistic Regression Converting categorical features to numerical—one-hot encoding and ordinal encoding Classifying data with logistic regression Getting started with the logistic function Jumping from the logistic function to logistic regression Training a logistic regression model Training a logistic regression model using gradient descent Predicting ad click-through with logistic regression using gradient descent Training a logistic regression model using stochastic gradient descent Training a logistic regression model with regularization Feature selection using L1 regularization Training on large datasets with online learning Handling multiclass classification Implementing logistic regression using TensorFlow Feature selection using random forest Summary Exercises Chapter 6: Scaling Up Prediction to Terabyte Click Logs Learning the essentials of Apache Spark Breaking down Spark Installing Spark Launching and deploying Spark programs Programming in PySpark Learning on massive click logs with Spark Loading click logs Splitting and caching the data One-hot encoding categorical features Training and testing a logistic regression model Feature engineering on categorical variables with Spark Hashing categorical features Combining multiple variables – feature interaction Summary Exercises Chapter 7: Predicting Stock Prices with Regression Algorithms A brief overview of the stock market and stock prices What is regression? Mining stock price data Getting started with feature engineering Acquiring data and generating features Estimating with linear regression How does linear regression work? Implementing linear regression from scratch Implementing linear regression with scikit-learn Implementing linear regression with TensorFlow Estimating with decision tree regression Transitioning from classification trees to regression trees Implementing decision tree regression Implementing a regression forest Estimating with support vector regression Implementing SVR Evaluating regression performance Predicting stock prices with the three regression algorithms Summary Exercises Chapter 8: Predicting Stock Prices with Artificial Neural Networks Demystifying neural networks Starting with a single-layer neural network Layers in neural networks Activation functions Backpropagation Adding more layers to a neural network: DL Building neural networks Implementing neural networks from scratch Implementing neural networks with scikit-learn Implementing neural networks with TensorFlow Picking the right activation functions Preventing overfitting in neural networks Dropout Early stopping Predicting stock prices with neural networks Training a simple neural network Fine-tuning the neural network Summary Exercise Chapter 9: Mining the 20 Newsgroups Dataset with Text Analysis Techniques How computers understand language – NLP What is NLP? The history of NLP NLP applications Touring popular NLP libraries and picking up NLP basics Installing famous NLP libraries Corpora Tokenization PoS tagging NER Stemming and lemmatization Semantics and topic modeling Getting the newsgroups data Exploring the newsgroups data Thinking about features for text data Counting the occurrence of each word token Text preprocessing Dropping stop words Reducing inflectional and derivational forms of words Visualizing the newsgroups data with t-SNE What is dimensionality reduction? t-SNE for dimensionality reduction Summary Exercises Chapter 10: Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling Learning without guidance – unsupervised learning Clustering newsgroups data using k-means How does k-means clustering work? Implementing k-means from scratch Implementing k-means with scikit-learn Choosing the value of k Clustering newsgroups data using k-means Discovering underlying topics in newsgroups Topic modeling using NMF Topic modeling using LDA Summary Exercises Chapter 11: Machine Learning Best Practices Machine learning solution workflow Best practices in the data preparation stage Best practice 1 – Completely understanding the project goal Best practice 2 – Collecting all fields that are relevant Best practice 3 – Maintaining the consistency of field values Best practice 4 – Dealing with missing data Best practice 5 – Storing large-scale data Best practices in the training sets generation stage Best practice 6 – Identifying categorical features with numerical values Best practice 7 – Deciding whether to encode categorical features Best practice 8 – Deciding whether to select features, and if so, how to do so Best practice 9 – Deciding whether to reduce dimensionality, and if so, how to do so Best practice 10 – Deciding whether to rescale features Best practice 11 – Performing feature engineering with domain expertise Best practice 12 – Performing feature engineering without domain expertise Binarization Discretization Interaction Polynomial transformation Best practice 13 – Documenting how each feature is generated Best practice 14 – Extracting features from text data Tf and tf-idf Word embedding Word embedding with pre-trained models Best practices in the model training, evaluation, and selection stage Best practice 15 – Choosing the right algorithm(s) to start with Naïve Bayes Logistic regression SVM Random forest (or decision tree) Neural networks Best practice 16 – Reducing overfitting Best practice 17 – Diagnosing overfitting and underfitting Best practice 18 – Modeling on large-scale datasets Best practices in the deployment and monitoring stage Best practice 19 – Saving, loading, and reusing models Saving and restoring models using pickle Saving and restoring models in TensorFlow Best practice 20 – Monitoring model performance Best practice 21 – Updating models regularly Summary Exercises Chapter 12: Categorizing Images of Clothing with Convolutional Neural Networks Getting started with CNN building blocks The convolutional layer The nonlinear layer The pooling layer Architecting a CNN for classification Exploring the clothing image dataset Classifying clothing images with CNNs Architecting the CNN model Fitting the CNN model Visualizing the convolutional filters Boosting the CNN classifier with data augmentation Horizontal flipping for data augmentation Rotation for data augmentation Shifting for data augmentation Improving the clothing image classifier with data augmentation Summary Exercises Chapter 13: Making Predictions with Sequences Using Recurrent Neural Networks Introducing sequential learning Learning the RNN architecture by example Recurrent mechanism Many-to-one RNNs One-to-many RNNs Many-to-many (synced) RNNs Many-to-many (unsynced) RNNs Training an RNN model Overcoming long-term dependencies with Long Short-Term Memory Analyzing movie review sentiment with RNNs Analyzing and preprocessing the data Building a simple LSTM network Stacking multiple LSTM layers Writing your own War and Peace with RNNs Acquiring and analyzing the training data Constructing the training set for the RNN text generator Building an RNN text generator Training the RNN text generator Advancing language understanding with the Transformer model Exploring the Transformer's architecture Understanding self-attention Summary Exercises Chapter 14: Making Decisions in Complex Environments with Reinforcement Learning Setting up the working environment Installing PyTorch Installing OpenAI Gym Introducing reinforcement learning with examples Elements of reinforcement learning Cumulative rewards Approaches to reinforcement learning Solving the FrozenLake environment with dynamic programming Simulating the FrozenLake environment Solving FrozenLake with the value iteration algorithm Solving FrozenLake with the policy iteration algorithm Performing Monte Carlo learning Simulating the Blackjack environment Performing Monte Carlo policy evaluation Performing on-policy Monte Carlo control Solving the Taxi problem with the Q-learning algorithm Simulating the Taxi environment Developing the Q-learning algorithm Summary Exercises Other Books You May Enjoy Index