ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Python Feature Engineering Cookbook: Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models

دانلود کتاب کتاب آشپزی مهندسی ویژگی Python: بیش از 70 دستور العمل برای ایجاد، مهندسی و تبدیل ویژگی‌ها برای ساخت مدل‌های یادگیری ماشین

Python Feature Engineering Cookbook: Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models

مشخصات کتاب

Python Feature Engineering Cookbook: Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781789806311 
ناشر: Packt Publishing Ltd 
سال نشر: 2020 
تعداد صفحات: 364 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 Mb 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Python Feature Engineering Cookbook: Over 70 Recipes for Creating, Engineering, and Transforming Features to Build Machine Learning Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب آشپزی مهندسی ویژگی Python: بیش از 70 دستور العمل برای ایجاد، مهندسی و تبدیل ویژگی‌ها برای ساخت مدل‌های یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب آشپزی مهندسی ویژگی Python: بیش از 70 دستور العمل برای ایجاد، مهندسی و تبدیل ویژگی‌ها برای ساخت مدل‌های یادگیری ماشین

استخراج اطلاعات دقیق از داده‌ها برای آموزش و بهبود مدل‌های یادگیری ماشین با استفاده از کتابخانه‌های NumPy، SciPy، پانداها، و scikit-learn. مجموعه داده‌های گسسته و بدون ساختار پیاده‌سازی تکنیک‌های مدرن استخراج ویژگی با استفاده از کتابخانه‌های پاندای پایتون، scikit-learn، SciPy و NumPy شرح کتاب مهندسی ویژگی برای توسعه و غنی‌سازی مدل‌های یادگیری ماشین شما بسیار ارزشمند است. در این کتاب آشپزی، شما با بهترین ابزارها کار خواهید کرد تا خطوط لوله و تکنیک های مهندسی ویژگی های خود را ساده کنید و کیفیت کد خود را ساده و بهبود بخشید. با استفاده از کتابخانه های پایتون مانند پانداها، scikit-learn، Featuretools و Feature-engine، یاد خواهید گرفت که چگونه با مجموعه داده های پیوسته و گسسته کار کنید و می توانید ویژگی ها را از مجموعه داده های بدون ساختار تغییر دهید. شما مهارت های لازم برای انتخاب بهترین ویژگی ها و همچنین مناسب ترین تکنیک های استخراج را توسعه خواهید داد. این کتاب دستور العمل های پایتون را پوشش می دهد که به شما کمک می کند مهندسی ویژگی را خودکار کنید تا فرآیندهای پیچیده را ساده کنید. شما همچنین با استراتژی‌های مهندسی ویژگی‌های مختلف، مانند تبدیل جعبه-کاکس، تبدیل قدرت، و تبدیل گزارش در سراسر حوزه‌های یادگیری ماشین، یادگیری تقویتی و پردازش زبان طبیعی (NLP) آشنا خواهید شد. در پایان این کتاب، نکات و راه حل های عملی برای تمام مشکلات مهندسی ویژگی های خود را کشف خواهید کرد. آنچه یاد خواهید گرفت خطوط لوله مهندسی ویژگی های خود را با بسته های قدرتمند پایتون ساده کنید با وارد کردن مقادیر گمشده کنار بیایید رمزگذاری متغیرهای طبقه بندی شده با مجموعه گسترده ای از تکنیک ها استخراج بینش از متن به سرعت و بدون زحمت توسعه ویژگی ها از داده های تراکنشی و داده های سری زمانی استخراج ویژگی های جدید با ترکیب کردن متغیرهای موجود درک کنید که چگونه متغیرهای خود را تغییر دهید، گسسته سازی کنید و مقیاس دهید ایجاد متغیرهای آموزنده از تاریخ و زمان این کتاب برای چه کسی است این کتاب برای متخصصان یادگیری ماشین، مهندسان هوش مصنوعی، دانشمندان داده، و مهندسین NLP و یادگیری تقویتی است که می خواهند بهینه سازی کنند و مدل‌های یادگیری ماشین خود را با بهترین ویژگی‌ها غنی کنند. دانش یادگیری ماشین و کدنویسی پایتون به شما در درک مفاهیم مطرح شده در این کتاب کمک می کند.


توضیحاتی درمورد کتاب به خارجی

Extract accurate information from data to train and improve machine learning models using NumPy, SciPy, pandas, and scikit-learn libraries Key Features Discover solutions for feature generation, feature extraction, and feature selection Uncover the end-to-end feature engineering process across continuous, discrete, and unstructured datasets Implement modern feature extraction techniques using Python\'s pandas, scikit-learn, SciPy and NumPy libraries Book Description Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you\'ll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You\'ll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you\'ll have discovered tips and practical solutions to all of your feature engineering problems. What you will learn Simplify your feature engineering pipelines with powerful Python packages Get to grips with imputing missing values Encode categorical variables with a wide set of techniques Extract insights from text quickly and effortlessly Develop features from transactional data and time series data Derive new features by combining existing variables Understand how to transform, discretize, and scale your variables Create informative variables from date and time Who this book is for This book is for machine learning professionals, AI engineers, data scientists, and NLP and reinforcement learning engineers who want to optimize and enrich their machine learning models with the best features. Knowledge of machine learning and Python coding will assist you with understanding the concepts covered in this book.



فهرست مطالب

Cover
Title Page
Copyright and Credits
About Packt
Contributors
Table of Contents
Preface
Chapter 1: Foreseeing Variable Problems When Building ML Models
	Technical requirements
	Identifying numerical and categorical variables
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Quantifying missing data
		Getting ready
		How to do it...
		How it works...
	Determining cardinality in categorical variables
		Getting ready
		How to do it...
		How it works...
		There's more...
	Pinpointing rare categories in categorical variables
		Getting ready
		How to do it...
		How it works...
	Identifying a linear relationship
		How to do it...
		How it works...
		There's more...
		See also
	Identifying a normal distribution
		How to do it...
		How it works...
		There's more...
		See also
	Distinguishing variable distribution
		Getting ready
		How to do it...
		How it works...
		See also
	Highlighting outliers
		Getting ready
		How to do it...
		How it works...
	Comparing feature magnitude
		Getting ready
		How to do it...
		How it works...
Chapter 2: Imputing Missing Data
	Technical requirements
	Removing observations with missing data
		How to do it...
		How it works...
		See also
	Performing mean or median imputation
		How to do it...
		How it works...
		There's more...
		See also
	Implementing mode or frequent category imputation
		How to do it...
		How it works...
		See also
	Replacing missing values with an arbitrary number
		How to do it...
		How it works...
		There's more...
		See also
	Capturing missing values in a bespoke category
		How to do it...
		How it works...
		See also
	Replacing missing values with a value at the end of the distribution
		How to do it...
		How it works...
		See also
	Implementing random sample imputation
		How to do it...
		How it works...
		See also
	Adding a missing value indicator variable
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Performing multivariate imputation by chained equations
		Getting ready
		How to do it...
		How it works...
		There's more...
	Assembling an imputation pipeline with scikit-learn
		How to do it...
		How it works...
		See also
	Assembling an imputation pipeline with Feature-engine
		How to do it...
		How it works...
		See also
Chapter 3: Encoding Categorical Variables
	Technical requirements
	Creating binary variables through one-hot encoding
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Performing one-hot encoding of frequent categories
		Getting ready
		How to do it...
		How it works...
		There's more...
	Replacing categories with ordinal numbers
		How to do it...
		How it works...
		There's more...
		See also
	Replacing categories with counts or frequency of observations
		How to do it...
		How it works...
		There's more...
	Encoding with integers in an ordered manner
		How to do it...
		How it works...
		See also
	Encoding with the mean of the target
		How to do it...
		How it works...
		See also
	Encoding with the Weight of Evidence
		How to do it...
		How it works...
		See also
	Grouping rare or infrequent categories
		How to do it...
		How it works...
		See also
	Performing binary encoding
		Getting ready
		How to do it...
		How it works...
		See also
	Performing feature hashing
		Getting ready
		How to do it...
		How it works...
		See also
Chapter 4: Transforming Numerical Variables
	Technical requirements
	Transforming variables with the logarithm
		How to do it...
		How it works...
		See also
	Transforming variables with the reciprocal function
		How to do it...
		How it works...
		See also
	Using square and cube root to transform variables
		How to do it...
		How it works...
		There's more...
	Using power transformations on numerical variables
		How to do it...
		How it works...
		There's more...
		See also
	Performing Box-Cox transformation on numerical variables
		How to do it...
		How it works...
		See also
	Performing Yeo-Johnson transformation on numerical variables
		How to do it...
		How it works...
		See also
Chapter 5: Performing Variable Discretization
	Technical requirements
	Dividing the variable into intervals of equal width
		How to do it...
		How it works...
		See also
	Sorting the variable values in intervals of equal frequency
		How to do it...
		How it works...
	Performing discretization followed by categorical encoding
		How to do it...
		How it works...
		See also
	Allocating the variable values in arbitrary intervals
		How to do it...
		How it works...
	Performing discretization with k-means clustering
		How to do it...
		How it works...
	Using decision trees for discretization
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
Chapter 6: Working with Outliers
	Technical requirements
	Trimming outliers from the dataset
		How to do it...
		How it works...
		There's more...
	Performing winsorization
		How to do it...
		How it works...
		There's more...
		See also
	Capping the variable at arbitrary maximum and minimum values
		How to do it...
		How it works...
		There's more...
		See also
	Performing zero-coding – capping the variable at zero
		How to do it...
		How it works...
		There's more...
		See also
Chapter 7: Deriving Features from Dates and Time Variables
	Technical requirements
	Extracting date and time parts from a datetime variable
		How to do it...
		How it works...
		See also
	Deriving representations of the year and month
		How to do it...
		How it works...
		See also
	Creating representations of day and week
		How to do it...
		How it works...
		See also
	Extracting time parts from a time variable
		How to do it...
		How it works...
	Capturing the elapsed time between datetime variables
		How to do it...
		How it works...
		See also
	Working with time in different time zones
		How to do it...
		How it works...
		See also
Chapter 8: Performing Feature Scaling
	Technical requirements
	Standardizing the features
		How to do it...
		How it works...
		See also
	Performing mean normalization
		How to do it...
		How it works...
		There's more...
		See also
	Scaling to the maximum and minimum values
		How to do it...
		How it works...
		See also
	Implementing maximum absolute scaling
		How to do it...
		How it works...
		There's more...
		See also
	Scaling with the median and quantiles
		How to do it...
		How it works...
		See also
	Scaling to vector unit length
		How to do it...
		How it works...
		See also
Chapter 9: Applying Mathematical Computations to Features
	Technical requirements
	Combining multiple features with statistical operations
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Combining pairs of features with mathematical functions
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Performing polynomial expansion
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Deriving new features with decision trees
		Getting ready
		How to do it...
		How it works...
		There's more...
	Carrying out PCA
		Getting ready
		How to do it...
		How it works...
		See also
Chapter 10: Creating Features with Transactional and Time Series Data
	Technical requirements
	Aggregating transactions with mathematical operations
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Aggregating transactions in a time window
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Determining the number of local maxima and minima
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Deriving time elapsed between time-stamped events
		How to do it...
		How it works...
		There's more...
		See also
	Creating features from transactions with Featuretools
		How to do it...
		How it works...
		There's more...
		See also
Chapter 11: Extracting Features from Text Variables
	Technical requirements
	Counting characters, words, and vocabulary
		Getting ready
		How to do it...
		How it works...
		There's more...
		See also
	Estimating text complexity by counting sentences
		Getting ready
		How to do it...
		How it works...
		There's more...
	Creating features with bag-of-words and n-grams
		Getting ready
		How to do it...
		How it works...
		See also
	Implementing term frequency-inverse document frequency
		Getting ready
		How to do it...
		How it works...
		See also
	Cleaning and stemming text variables
		Getting ready
		How to do it...
		How it works...
Other Books You May Enjoy
Index




نظرات کاربران