دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: it-ebooks
سری: it-ebooks-2017
ISBN (شابک) : 9781491912058
ناشر: iBooker it-ebooks
سال نشر: 2017
تعداد صفحات: 375
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Python Data Science Handbook (Jupyter Notebook Version) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای علوم داده Python (نسخه نوت بوک Jupyter) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای بسیاری از محققان، پایتون یک ابزار درجه یک است که عمدتاً به دلیل کتابخانه های آن برای ذخیره، دستکاری و به دست آوردن بینش از داده ها است. چندین منبع برای تک تک این پشته علم داده وجود دارد، اما فقط با کتاب راهنمای علوم داده پایتون میتوانید همه آنها را دریافت کنید - IPython، NumPy، Pandas، Matplotlib، Scikit-Learn، و سایر ابزارهای مرتبط. دانشمندان فعال و خردکنندههای داده که با خواندن و نوشتن کد پایتون آشنا هستند، این مرجع جامع میز را برای مقابله با مسائل روزمره ایدهآل مییابند: دستکاری، تبدیل، و تمیز کردن دادهها. تجسم انواع مختلف داده ها؛ و استفاده از داده ها برای ساخت مدل های آماری یا یادگیری ماشینی. خیلی ساده، این مرجع ضروری برای محاسبات علمی در پایتون است. با استفاده از این کتابچه راهنما، نحوه استفاده از: IPython و Jupyter: فراهم کردن محیط های محاسباتی برای دانشمندان داده با استفاده از Python NumPy: شامل درایه ای برای ذخیره سازی کارآمد و دستکاری آرایه های داده متراکم در Python Pandas: دارای DataFrame برای ذخیره سازی و دستکاری کارآمد است. دادههای برچسبدار/ستونی در Python Matplotlib: شامل قابلیتهایی برای طیف انعطافپذیری از تجسم دادهها در Python Scikit-Learn: برای پیادهسازی کارآمد و تمیز Python از مهمترین و شناختهشدهترین الگوریتمهای یادگیری ماشین
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all--IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Copyright Table of Contents Preface What Is Data Science? Who Is This Book For? Why Python? Python 2 Versus Python 3 Outline of This Book Using Code Examples Installation Considerations Conventions Used in This Book O’Reilly Safari How to Contact Us Chapter 1. IPython: Beyond Normal Python Shell or Notebook? Launching the IPython Shell Launching the Jupyter Notebook Help and Documentation in IPython Accessing Documentation with ? Accessing Source Code with ?? Exploring Modules with Tab Completion Keyboard Shortcuts in the IPython Shell Navigation Shortcuts Text Entry Shortcuts Command History Shortcuts Miscellaneous Shortcuts IPython Magic Commands Pasting Code Blocks: %paste and %cpaste Running External Code: %run Timing Code Execution: %timeit Help on Magic Functions: ?, %magic, and %lsmagic Input and Output History IPython’s In and Out Objects Underscore Shortcuts and Previous Outputs Suppressing Output Related Magic Commands IPython and Shell Commands Quick Introduction to the Shell Shell Commands in IPython Passing Values to and from the Shell Shell-Related Magic Commands Errors and Debugging Controlling Exceptions: %xmode Debugging: When Reading Tracebacks Is Not Enough Profiling and Timing Code Timing Code Snippets: %timeit and %time Profiling Full Scripts: %prun Line-by-Line Profiling with %lprun Profiling Memory Use: %memit and %mprun More IPython Resources Web Resources Books Chapter 2. Introduction to NumPy Understanding Data Types in Python A Python Integer Is More Than Just an Integer A Python List Is More Than Just a List Fixed-Type Arrays in Python Creating Arrays from Python Lists Creating Arrays from Scratch NumPy Standard Data Types The Basics of NumPy Arrays NumPy Array Attributes Array Indexing: Accessing Single Elements Array Slicing: Accessing Subarrays Reshaping of Arrays Array Concatenation and Splitting Computation on NumPy Arrays: Universal Functions The Slowness of Loops Introducing UFuncs Exploring NumPy’s UFuncs Advanced Ufunc Features Ufuncs: Learning More Aggregations: Min, Max, and Everything in Between Summing the Values in an Array Minimum and Maximum Example: What Is the Average Height of US Presidents? Computation on Arrays: Broadcasting Introducing Broadcasting Rules of Broadcasting Broadcasting in Practice Comparisons, Masks, and Boolean Logic Example: Counting Rainy Days Comparison Operators as ufuncs Working with Boolean Arrays Boolean Arrays as Masks Fancy Indexing Exploring Fancy Indexing Combined Indexing Example: Selecting Random Points Modifying Values with Fancy Indexing Example: Binning Data Sorting Arrays Fast Sorting in NumPy: np.sort and np.argsort Partial Sorts: Partitioning Example: k-Nearest Neighbors Structured Data: NumPy’s Structured Arrays Creating Structured Arrays More Advanced Compound Types RecordArrays: Structured Arrays with a Twist On to Pandas Chapter 3. Data Manipulation with Pandas Installing and Using Pandas Introducing Pandas Objects The Pandas Series Object The Pandas DataFrame Object The Pandas Index Object Data Indexing and Selection Data Selection in Series Data Selection in DataFrame Operating on Data in Pandas Ufuncs: Index Preservation UFuncs: Index Alignment Ufuncs: Operations Between DataFrame and Series Handling Missing Data Trade-Offs in Missing Data Conventions Missing Data in Pandas Operating on Null Values Hierarchical Indexing A Multiply Indexed Series Methods of MultiIndex Creation Indexing and Slicing a MultiIndex Rearranging Multi-Indices Data Aggregations on Multi-Indices Combining Datasets: Concat and Append Recall: Concatenation of NumPy Arrays Simple Concatenation with pd.concat Combining Datasets: Merge and Join Relational Algebra Categories of Joins Specification of the Merge Key Specifying Set Arithmetic for Joins Overlapping Column Names: The suffixes Keyword Example: US States Data Aggregation and Grouping Planets Data Simple Aggregation in Pandas GroupBy: Split, Apply, Combine Pivot Tables Motivating Pivot Tables Pivot Tables by Hand Pivot Table Syntax Example: Birthrate Data Vectorized String Operations Introducing Pandas String Operations Tables of Pandas String Methods Example: Recipe Database Working with Time Series Dates and Times in Python Pandas Time Series: Indexing by Time Pandas Time Series Data Structures Frequencies and Offsets Resampling, Shifting, and Windowing Where to Learn More Example: Visualizing Seattle Bicycle Counts High-Performance Pandas: eval() and query() Motivating query() and eval(): Compound Expressions pandas.eval() for Efficient Operations DataFrame.eval() for Column-Wise Operations DataFrame.query() Method Performance: When to Use These Functions Further Resources Chapter 4. Visualization with Matplotlib General Matplotlib Tips Importing matplotlib Setting Styles show() or No show()? How to Display Your Plots Saving Figures to File Two Interfaces for the Price of One Simple Line Plots Adjusting the Plot: Line Colors and Styles Adjusting the Plot: Axes Limits Labeling Plots Simple Scatter Plots Scatter Plots with plt.plot Scatter Plots with plt.scatter plot Versus scatter: A Note on Efficiency Visualizing Errors Basic Errorbars Continuous Errors Density and Contour Plots Visualizing a Three-Dimensional Function Histograms, Binnings, and Density Two-Dimensional Histograms and Binnings Customizing Plot Legends Choosing Elements for the Legend Legend for Size of Points Multiple Legends Customizing Colorbars Customizing Colorbars Example: Handwritten Digits Multiple Subplots plt.axes: Subplots by Hand plt.subplot: Simple Grids of Subplots plt.subplots: The Whole Grid in One Go plt.GridSpec: More Complicated Arrangements Text and Annotation Example: Effect of Holidays on US Births Transforms and Text Position Arrows and Annotation Customizing Ticks Major and Minor Ticks Hiding Ticks or Labels Reducing or Increasing the Number of Ticks Fancy Tick Formats Summary of Formatters and Locators Customizing Matplotlib: Configurations and Stylesheets Plot Customization by Hand Changing the Defaults: rcParams Stylesheets Three-Dimensional Plotting in Matplotlib Three-Dimensional Points and Lines Three-Dimensional Contour Plots Wireframes and Surface Plots Surface Triangulations Geographic Data with Basemap Map Projections Drawing a Map Background Plotting Data on Maps Example: California Cities Example: Surface Temperature Data Visualization with Seaborn Seaborn Versus Matplotlib Exploring Seaborn Plots Example: Exploring Marathon Finishing Times Further Resources Matplotlib Resources Other Python Graphics Libraries Chapter 5. Machine Learning What Is Machine Learning? Categories of Machine Learning Qualitative Examples of Machine Learning Applications Summary Introducing Scikit-Learn Data Representation in Scikit-Learn Scikit-Learn’s Estimator API Application: Exploring Handwritten Digits Summary Hyperparameters and Model Validation Thinking About Model Validation Selecting the Best Model Learning Curves Validation in Practice: Grid Search Summary Feature Engineering Categorical Features Text Features Image Features Derived Features Imputation of Missing Data Feature Pipelines In Depth: Naive Bayes Classification Bayesian Classification Gaussian Naive Bayes Multinomial Naive Bayes When to Use Naive Bayes In Depth: Linear Regression Simple Linear Regression Basis Function Regression Regularization Example: Predicting Bicycle Traffic In-Depth: Support Vector Machines Motivating Support Vector Machines Support Vector Machines: Maximizing the Margin Example: Face Recognition Support Vector Machine Summary In-Depth: Decision Trees and Random Forests Motivating Random Forests: Decision Trees Ensembles of Estimators: Random Forests Random Forest Regression Example: Random Forest for Classifying Digits Summary of Random Forests In Depth: Principal Component Analysis Introducing Principal Component Analysis PCA as Noise Filtering Example: Eigenfaces Principal Component Analysis Summary In-Depth: Manifold Learning Manifold Learning: “HELLO” Multidimensional Scaling (MDS) MDS as Manifold Learning Nonlinear Embeddings: Where MDS Fails Nonlinear Manifolds: Locally Linear Embedding Some Thoughts on Manifold Methods Example: Isomap on Faces Example: Visualizing Structure in Digits In Depth: k-Means Clustering Introducing k-Means k-Means Algorithm: Expectation–Maximization Examples In Depth: Gaussian Mixture Models Motivating GMM: Weaknesses of k-Means Generalizing E–M: Gaussian Mixture Models GMM as Density Estimation Example: GMM for Generating New Data In-Depth: Kernel Density Estimation Motivating KDE: Histograms Kernel Density Estimation in Practice Example: KDE on a Sphere Example: Not-So-Naive Bayes Application: A Face Detection Pipeline HOG Features HOG in Action: A Simple Face Detector Caveats and Improvements Further Machine Learning Resources Machine Learning in Python General Machine Learning Index About the Author Colophon