دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Catalin I. Pruncu (editor), Amit Aherwar (editor), Stanislav Gorb (editor) سری: ISBN (شابک) : 9780367493950, 0367493950 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 217 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Progress in Lubrication and Nano- and Biotribology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در روانکاری و نانو و بیوتریبولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تریبولوژی یک علم چند رشته ای است که شامل مهندسی مکانیک، علم مواد، مهندسی سطح، روان کننده ها و شیمی مواد افزودنی با کاربردهای فوق العاده است. پیشرفت در روانکاری و نانو و بیوتریبولوژی آخرین مورد در مهندسی روانکاری و نانو و بیوتریبولوژی را مورد بحث قرار می دهد.
این کتاب:
< /p>
این کتاب که برای محققان و دانشآموزان پیشرفته نوشته شده است، دیدگاه گستردهای از جدیدترین فناوریهای نانو و بیوتریبولوژی را برای انواع کاربردهای بین رشتهای در بر میگیرد.
Tribology is a multidisciplinary science that encompasses mechanical engineering, materials science, surface engineering, lubricants, and additives chemistry with tremendous applications. Progress in Lubrication and Nano- and Biotribology discusses the latest in lubrication engineering and nano- and biotribology.
This book:
Written for researchers and advanced students, this book encompasses a wide-ranging view of the latest in nano- and biotribology for a variety of cross-disciplinary applications.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Advancements in Biotribology 1.1 Introduction 1.2 Articular Tribology 1.2.1 Natural Synovial Joints 1.2.2 Biotribology in Knee and Hip Joints 1.3 Soft Matter and Skin Tribology 1.3.1 Friction of Human Skin 1.3.2 Hydration of Skin 1.3.3 Contacting Materials and Their Effect on Skin 1.3.4 Effect of Sliding Velocity and Rotation 1.4 Dental Biotribology and Oral Processing 1.4.1 Wear of Human Teeth: Main Factors 1.4.2 Effects of Metals and Alloys 1.4.3 Effect of Ceramics 1.4.4 Effect of Composites 1.5 Biotribology of Other Human Organs 1.5.1 Cardiovascular System 1.5.2 Hair 1.5.3 Ocular Systems 1.6 Biotribology in Nature 1.6.1 Animal Feet and Surfaces 1.7 Summary and Prospects Acknowledgment Conflict of Interest References Chapter 2 Nano Lubricant Additives 2.1 Introduction 2.2 Preparation of a Nano Lubricant Additive 2.2.1 The Oxide Nano Lubricant Additives 2.2.2 The Sulfied Nano Lubricant Additives 2.2.3 The Metal Nano Lubricant Additives 2.2.4 The Carbon Nano Lubricant Additives 2.3 The Influence of Nanoadditives on the Tribological Properties of Lubricants 2.3.1 The Dispersity and Stability of Nanoadditives in Lubricants 2.3.2 The Rheological Properties of Lubricants with Nano Lubricant Additives 2.3.3 The Anti-wear and Friction Reduction Properties of Nano Lubricant Additives 2.4 The Anti-wear and Friction Reduction Mechanism of Nano Lubricant Additives 2.5 Conclusions References Chapter 3 Ceramic Matrix High-Temperature Self-Lubricating Materials 3.1 Introduction of High-Temperature Lubrication 3.2 Oxide Ceramic Matrix High-Temperature Self-Lubricating Materials 3.2.1 ZrO[sub(2)] Matrix High-Temperature Self-Lubricating Materials 3.2.1.1 Friction Compatibility of Solid Lubricants for ZrO[sub(2)] Matrix Materials 3.2.1.2 ZrO[sub(2)]– Mo–CuO High-Temperature Self-Lubricating Composite 3.2.1.3 ZrO[sub(2)] –MoS[sub(2)] –CaF[sub(2)] Self-Lubricating Composite at a Wide Temperature Range 3.2.2 Al[sub(2)] O[sub(2)] Matrix High-Temperature Self-Lubricating Materials 3.3 Nitride Ceramic Matrix High-Temperature Self-Lubricating Materials 3.3.1 Nitride Matrix High-Temperature Self-Adaptive Coatings 3.3.1.1 Mo[sub(2)]N-Ag High-Temperature Self-Adaptive Coating 3.3.1.2 VN–Ag High-Temperature Self-Adaptive Lubricating Coating 3.3.1.3 NbN–Ag and TaN–Ag High-Temperature Self-Adaptive Lubricating Coatings 3.3.2 Si[sub(3)] N[sub(4)] Matrix High Temperature Self-Lubricating Materials 3.3.2.1 Si[sub(3)]N[sub(4)]–Ag High-Temperature Self-Lubricating Composites 3.3.2.2 Si[sub(3)] N[sub(4)] –TiCN High-Temperature Composite 3.3.2.3 Sialon Matrix Self-Lubricating Composite 3.4 Carbide Ceramic Matrix High-Temperature Self-Lubricating Materials 3.5 Boride Ceramic Matrix High-Temperature Self-Lubricating Materials 3.5.1 h-BN Matrix High-Temperature Self-Lubricating Materials 3.5.2 MoAlB Machinable Ceramic 3.5.3 AlMgB[sub(14)] Superhard Ceramic 3.6 MAX Phase Matrix High-Temperature Self-Lubricating Materials 3.7 Conclusions and Future Works Acknowledgments References Chapter 4 Exploration of Bio-Greases for Tribological Applications 4.1 Introduction 4.1.1 Current Status of the Grease Market 4.1.2 The Need for Bio-Greases 4.2 Grease Composition 4.2.1 Base Oil 4.2.1.1 Mineral Oil 4.2.1.2 Synthetic Oil 4.2.1.3 Vegetable Oil 4.2.2 Thickener 4.2.2.1 Soap Thickener 4.2.2.2 Non-Soap Thickener 4.2.2.3 Mixed Thickener 4.3 Grease Structure 4.4 Additives 4.5 Role of Nanoadditives 4.6 Basic Process for Grease Preparation 4.7 Grease Consistency 4.8 Dropping Point 4.9 Bio-based Greases 4.10 Evaluation of Tribological and Rheological Properties of Bio-Greases 4.10.1 Tribological Properties of Bio-Greases 4.10.2 Rheological Properties of Bio-Greases 4.11 Conclusions 4.12 Future Work References Chapter 5 Performance Investigation of Hydrodynamic Journal Bearing under Severe Environment 5.1 Introduction 5.2 Circular Bearing Analysis 5.2.1 Linear Turbulence Modeling 5.2.2 Modeling of a Non-Newtonian Flow 5.3 Finite Element Procedure 5.4 Solution Scheme 5.5 Steady-State Performance Parameters 5.5.1 Load Capacity and Attitude Angle 5.5.2 Friction Coefficient Parameter 5.5.3 Temperature Rise Variable 5.5.4 Total Oil Flow 5.6 Result and Discussions 5.7 Conclusions Nomenclature Dimensionless Parameters Matrices References Chapter 6 Bio-Functionalized Porous TI 6.1 Introduction 6.2 Porous Titanium 6.3 Bio-Functionalization by Micro-Arc Oxidation 6.4 Bio-Functionalized Macro-Porous Ti 6.5 Summary and Concluding Remarks References Chapter 7 Snake Skin Tribology: Material, Surface Structure, Frictional Properties, and Biomimetic Implications 7.1 Diversity of Surface Structures of Belly Scales in Snakes 7.2 Inner Architecture and Mechanical Properties of Snake Skin 7.3 Chemical Aspects of the Snake Skin Surface 7.4 Anisotropic Friction of Belly Scales in Snakes: Experimental Studies 7.5 Numerical Modeling of the Frictional? Anisotropy-Based System of the Snake Skin 7.6 Snake Locomotion Based on Frictional?Anisotropy 7.7 Biomimetics: Friction Microstructured Surfaces of Polymers and Ceramics Inspired by Snake Skin 7.8 Future Perspectives References Chapter 8 Surface Modification of Ti6Al4V through Electrical Discharge Machining Assisted Alloying to Improve Its Tribological Behavior—The Pathway to Genesis of a New Alloying Technique 8.1 Introduction 8.2 Tribology of Ti6Al4V 8.2.1 Factors Affecting Tribo-Behavior 8.2.1.1 Thermal Oxidation ( ThO) 8.2.1.2 Tribo-Oxidation/ Oxides ( TO) and Tribo-Oxide Layer ( TOL) 8.2.1.3 Adiabatic Shear Banding ( ASB) 8.2.1.4 Shear Rate Sensitivity/ Response ( SRS/ SRR) 8.2.1.5 Dynamic Recrystallization ( DRX) 8.2.1.6 Flow Stress ( FS) 8.2.1.7 External Heating/ Heat Flux ( EH) 8.2.1.8 Frictional Heating ( FH) 8.2.1.9 Thermal Softening ( TS) 8.2.2 Friction and Wear Characteristics at Interactive Instances 8.3 Electrical Discharge Machining Assisted Alloying 8.3.1 Mechanism 8.3.2 Formation of Zones/ Layers 8.3.3 Mechanical, Metallurgical, and Bio-Compatible Properties of the Recast Layer 8.4 Surface Alloyed Ti6Al4V 8.4.1 Role of the Recast Layer in Controlling Tribological Characteristics 8.4.2 Surface Response under Dry Sliding Conditions 8.5 Future Scope 8.6 Conclusions References Index