دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: K. L. Mittal سری: Adhesion and Adhesives: Fundamental and Applied Aspects ISBN (شابک) : 111984665X, 9781119846659 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 893 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Progress in Adhesion and Adhesives, Volume 6 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیشرفت در چسبندگی و چسب ها، جلد 6 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Hot-Melt Adhesives: Fundamentals, Formulations, and Applications: A Critical Review 1.1 Introduction to Hot-Melt Adhesives (HMAs) 1.2 Formulation of Hot-Melt Adhesives 1.2.1 Theories or Mechanisms of Adhesion 1.2.1.1 Mechanical Interlocking Theory 1.2.1.2 Electrostatic Theory 1.2.1.3 Diffusion Theory 1.2.1.4 Physical Adsorption or Wetting Theory 1.2.1.5 Chemical Bonding 1.2.2 Intermolecular Forces between Adhesives and Adherend 1.2.3 Thermodynamic Model of Adhesion 1.2.4 Bonded Joints 1.2.5 Surface Preparation for HMA Application 1.2.5.1 Solvent Degreasing 1.2.5.2 Chemically-Active Surface 1.3 Fundamental Aspects of Adhesive Behavior of HMAs 1.3.1 Mechanical and Physical Behaviors 1.3.2 Blending Behavior and the Effects of Other Ingredients 1.3.3 Polymeric Behavior 1.4 Preparation of HMAs Using Various Polymers 1.4.1 HMAs by Grafting Acrylic and Crotonic Acids on Metallocene Ethylene-Octene Polymers 1.4.1.1 Solution Grafting 1.4.1.2 Melt Grafting 1.4.1.3 Preparation of HMAs 1.4.2 Cross-Linked Polyurethane Hot-Melt Adhesives (PUR-HMAs) 1.4.3 Soybean Protein Isolate and Polycaprolactone Based HMAs (SPIP-HMAs) 1.5 Mechanical Analysis of Hot-Melt Adhesives 1.5.1 Fracture Mechanics of HMAs 1.5.1.1 Fracture Energy Measurement 1.5.2 Stress-Strain, and Frequency-Temperature Sweep Tests for Viscoelasticity 1.6 Industrial Applications of Hot-Melt Adhesives 1.6.1 Medical Applications 1.6.2 Electronic Applications 1.6.3 Anticorrosion Applications 1.6.4 Food Packaging Applications 1.6.5 Textile Applications 1.7 Current Challenges and Future Scope of HMAs 1.8 Summary Acknowledgment References 2 Optimization of Adhesively Bonded Spar-Wingskin Joints of Laminated FRP Composites Subjected to Pull-Off Load: A Critical Review 2.1 Introduction 2.2 Finite Element Analysis of SWJ 2.2.1 Geometry and Configuration 2.2.2 Finite Element Modeling 2.2.3 Validation and Convergence Study 2.3 Taguchi Method of Optimization 2.3.1 Optimization of Material and Lamination Scheme 2.3.2 Geometrical Parameter 2.4 Results and Discussion 2.4.1 Material and Lamination Scheme 2.4.1.1 Analysis of Variance (ANOVA) 2.4.2 Geometrical Parameter 2.4.2.1 Analysis of Variance (ANOVA) 2.5 Conclusions References 3 Contact Angle Hysteresis – Advantages and Disadvantages: A Critical Review 3.1 Introduction 3.2 Contact Angle and Hysteresis Measurement 3.2.1 Theoretical Treatment of Static Contact Angles 3.2.2 Modeling of Dynamic Contact Angles 3.2.3 Modelling Contact Angle Hysteresis 3.3 Advantages of Contact Angle Hysteresis 3.4 Disadvantages of Contact Angle Hysteresis 3.5 Summary 3.6 Acknowledgements References 4 Test Methods for Fibre/Matrix Adhesion in Cellulose Fibre-Reinforced Thermoplastic Composite Materials: A Critical Review 4.1 Introduction 4.2 Terms and Definitions 4.2.1 Fibres 4.2.2 Fibre Bundle 4.2.3 Equivalent Diameter 4.2.4 Critical Length 4.2.5 Aspect Ratio and Critical Aspect Ratio 4.2.6 Single Element versus Collective 4.2.7 Interface and Interphase 4.2.8 Adhesion and Adherence 4.2.9 Practical & Theoretical Fibre/Matrix Adhesion 4.3 Test Methods for Fibre/Matrix Adhesion 4.3.1 Overview 4.3.2 Single Fibre/Single Fibre Bundle Tests 4.3.2.1 Pull-Out Test 4.3.2.2 Microbond Test 4.3.3 Test Procedures for Fibre/Matrix Adhesion 4.3.3.1 Pull-Out Test 4.3.3.2 Microbond Test 4.3.3.3 Evaluation of Characteristic Values from Pull-Out and Microbond Tests 4.3.3.4 Fragmentation Test 4.4 Comparison of IFSS Data 4.5 Influence of Fibre Treatment on the IFSS 4.6 Summary Acknowledgements References 5 Bioadhesives in Biomedical Applications: A Critical Review 5.1 Introduction 5.2 Theories of Bioadhesion 5.2.1 Factors Affecting Bioadhesion 5.3 Different Polymers Used as Bioadhesives 5.3.1 Collagen-Based Bioadhesives 5.3.2 Chitosan-Based Bioadhesives 5.3.3 Albumin-Based 5.3.4 Dextran-Based Bioadhesives 5.3.5 Gelatin-Based Bioadhesives 5.3.6 Poly(ethylene glycol)-Based Bioadhesives 5.3.7 Poly(acrylic acid)-Based Bioadhesives 5.3.8 Poly(lactic-co-glycolic acid) (PLGA)-Based Bioadhesives 5.4 Summary References 6 Mucoadhesive Pellets for Drug Delivery Applications: A Critical Review 6.1 Introduction 6.2 Mucoadhesive Polymers 6.3 Pellets 6.3.1 Preparation and Evaluation of Pellets 6.3.2 Mucoadhesive Pellets for Drug Delivery Applications 6.4 Summary and Prospects Conflict of Interest References 7 Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review 7.1 Introduction 7.2 The State-of-the-Art Icephobic Coatings/Surfaces 7.2.1 Lotus-Leaf-Inspired Superhydrophobic Surfaces (SHS) with Micro-/Nano-Scale Surface Textures 7.2.2 Pitcher-Plant-Inspired Slippery Liquid-Infused Porous Surfaces (SLIPS) 7.3 Impact Icing Process Pertinent to Aircraft Inflight Icing Phenomena 7.4 Preparation of Typical SHS and SLIPS Coatings/Surfaces 7.5 Measurements of Ice Adhesion Strengths on Different Icephobic Coatings/Surfaces 7.6 Icing Tunnel Testing to Evaluate the Icephobic Coatings/Surfaces for Impact Icing Mitigation 7.7 Characterization of Rain Erosion Effects on the Icephobic Coatings 7.8 Summary and Conclusions Acknowledgments References 8 Wood Adhesives Based on Natural Resources: A Critical Review Part I. Protein-Based Adhesives List of Abbreviations 8.1 Overview and Challenges for Wood Adhesives Based on Natural Resources 8.1.1 Definition of Wood Adhesives Based on Natural Resources 8.1.2 Motivation to Use Wood Adhesives Based on Natural Resources 8.1.3 Combined Use of Synthetic and Naturally-Based Wood Adhesives 8.1.4 Review Articles on Wood Adhesives Based on Natural Resources 8.1.5 Motivation for this Review Article in Four Parts in the Journal “Reviews of Adhesion and Adhesives” 8.1.6 Overview on Wood Adhesives Based on Natural Resources 8.1.7 Requirements, Limitations, and Opportunities for Wood Adhesives Based on Natural Resources 8.1.8 Synthetic and Natural Crosslinkers 8.1.9 Future of Wood Adhesives Based on Natural Resources 8.2 Protein-Based Adhesives 8.2.1 Introduction 8.2.1.1 Chemical Structure of Proteins 8.2.1.2 Proteinaceous Feedstock 8.2.1.3 Wood Bonding with Proteins 8.2.2 Plant-Based Proteins 8.2.2.1 Overview on Plant-Based Protein Sources and Types 8.2.2.2 Soy Proteins 8.2.2.3 Soy Protein as Wood Adhesive 8.2.2.4 Thermal Treatment of Soy Proteins 8.2.3 Animal-Based Proteins 8.2.3.1 Types and Sources of Animal-Based Proteins 8.2.3.2 Mussels (Marine) Proteins 8.2.3.3 Slaughterhouse Waste as Source of Proteins 8.2.3.4 Proteins from Specified Risk Materials (SRMs) 8.2.4 Properties of Protein-Based Adhesives 8.2.5 Denaturation and Modification of Proteins 8.2.5.1 Modification of Proteins 8.2.5.2 Crosslinking of Proteins 8.2.6 Proteins in Combination with Other Natural Adhesives and Natural Crosslinkers 8.2.7 Proteins in Combination with Synthetic Adhesive Resins and Crosslinkers 8.2.8 Application of Protein-Based Wood Adhesives 8.3 Summary General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources Protein-Based Adhesives Plant Proteins (including Soy) Animal Proteins and Other Sources References 9 Wood Adhesives Based on Natural Resources: A Critical Review Part II. Carbohydrate-Based Adhesives List of Abbreviations 9.1 Types and Sources of Carbohydrates Used as Wood Adhesives 9.2 Modification of Starch for Possible Use as Wood Adhesive 9.3 Citric Acid as Naturally-Based Modifier and Co-Reactant 9.4 Combination and Crosslinking of Carbohydrates with Natural and Synthetic Components 9.5 Degradation and Repolymerization of Carbohydrates 9.6 Summary General Literature (Overview and Review Articles) for CarbohydrateBased Adhesives References 10 Wood Adhesives Based on Natural Resources: A Critical Review Part III. Tannin- and Lignin-Based Adhesives List of Abbreviations 10.1 Introduction 10.2 Tannin-Based Adhesives 10.2.1 Chemistry of Condensed Tannins 10.2.2 Types of Condensed Tannins 10.2.3 Extraction, Purification, and Modification Methods for Tannins 10.2.4 Hardening and Crosslinking of Tannins 10.2.5 Hardening of Tannins by Hexamethylenetetramine (Hexamine) 10.2.6 Autocondensation of Tannins 10.2.7 Combination of Tannins with Natural Components 10.2.8 Combination of Tannins with Synthetic Components and Crosslinkers 10.3 Lignin-Based Adhesives 10.3.1 Chemistry and Structure of Lignin 10.3.2 Lignin as Adhesive 10.3.3 Analysis of Molecular Structure 10.3.4 Modification of Lignin 10.3.5 Lignin as Sole Adhesive and Chemical Activation of the Wood Surface 10.3.6 Laccase Induced Activation of Lignin 10.3.7 Pre-Methylolation of Lignin 10.3.8 Incorporation of Lignin into PF Resins 10.3.9 Reactions of Lignin With Various Aldehydes and Other Naturally-Based Components 10.3.10 Reaction of Lignin With Synthetic Components and Crosslinkers 10.4 Summary General Literature (Overview and Review Articles) for Tannin and Lignin References 11 Adhesion in Biocomposites: A Critical Review 11.1 Introduction 11.2 Biocomposite Processing Methods 11.3 Factors Enhancing Adhesion Property in Biocomposites 11.3.1 Effect of Chemical Modification 11.3.2 Effect of Enzymatic Modification 11.3.3 Effect of Physical Modification 11.4 Physical and Chemical Characterization 11.5 Adhesion in Polymer Biocomposites with Specific Applications 11.5.1 Biomedical Applications 11.5.2 Dye Adsorption and Removal 11.5.3 Automotive Applications 11.6 Summary References 12 Vacuum UV Surface Photo-Oxidation of Polymeric and Other Materials for Improving Adhesion: A Critical Review 12.1 Introduction 12.2 Vacuum UV Photo-Oxidation Process 12.2.1 VUV Background 12.2.2 VUV Radiation 12.2.2.1 Emission from Excited Atoms 12.2.2.2 Emission from High Pressure Rare Gas Plasmas 12.2.2.3 Emission from Rare-Gas Halides and Halogen Dimers 12.2.3 VUV Optical Filters 12.2.4 Penetration Depths of VUV Radiation in Polymers 12.2.5 Analytical Methods for Surface Analysis 12.2.6 VUV Photochemistry of Oxygen 12.2.7 Reaction of O Atoms and Ozone with a Polymer Surface 12.3 Adhesion to VUV Surface Photo-Oxidized Polymers 12.3.1 Fluoropolymers 12.3.2 Nafion 12.3.3 Polyimides 12.3.4 Metal-Containing Polymers 12.3.5 Polyethylene (PE) 12.3.6 Polystyrene 12.3.7 Other Polymers 12.3.7.1 Polypropylene (PP) 12.3.7.2 Poly(ethylene terephthalate) (PET) 12.3.7.3 Poly(ethylene 2,6-naphthalate) (PEN) 12.3.7.4 Cyclo-Olefin Polymers 12.3.7.5 Polybenzimidazole (PBI) 12.4 Applications of VUV Surface Photo-Oxidation to Other Materials 12.4.1 Carbon Nanotubes and Diamond 12.4.2 Metal Oxides 12.5 Prospects 12.5.1 Sustainable Polymers 12.6 Summary References 13 Bioand Water-Based Reversible Covalent Bonds Containing Polymers (Vitrimers) and Their Relevance to Adhesives – A Critical Revie List of Abbreviations 13.1 Introduction 13.1.1 RCBPs Classification 13.1.2 Reversible Bonds 13.1.2.1 General Reversible Covalent Bonds 13.1.2.2 Dynamic Reversible Covalent Bonds 13.1.3 RCBPs Applications 13.1.3.1 Recyclability 13.1.3.2 Self-Healing Materials 13.1.3.3 Shape-Memory Materials 13.1.3.4 Smart Composites 13.1.3.5 Adhesives 13.1.3.6 Dynamic Hydrogels and Biomedical Materials 13.2 Bio-Based RCBPs 13.2.1 Bio-Based Polymers 13.2.1.1 Classification of Bio-Based Polymers 13.2.1.2 Common Synthetic Bio-Based Polymers 13.2.2 Bio-Based RCBPs 13.2.2.1 Bio-Based DA RCBPs 13.2.2.2 Bio-Based Acylhydrazone-Containing RCBPs 13.2.2.3 Bio-Based Imine (Schiff-Base)-Containing RCBPs 13.2.2.4 Bio-Based ß-Hydroxy Ester Containing RCBPs 13.2.2.5 Bio-Based Disulfide-Containing RCBPs 13.3 Water-Based RCBPs 13.3.1 Solvents in Polymer Industry 13.3.1.1 Organic and Inorganic Solvents Used in RCBPs Synthesis 13.3.1.2 Water-Based Polymers 13.3.2 Water-Based RCBPs 13.3.2.1 Acylhydrazone-Containing Water-Based RCBPs 13.3.2.2 Schiff-Base-Containing Water-Based RCBPs 13.4 Summary 13.5 Authors Contributions 13.6 Funding 13.7 Conflict of Interest References 14 Superhydrophobic Surfaces by Microtexturing: A Critical Review 14.1 Introduction 14.1.1 Background 14.1.2 State-of-the-Art 14.1.2.1 Microtexture Geometry 14.1.2.2 Ice Adhesion 14.1.2.3 Optical Transparency 14.1.2.4 Anti-Condensation Surfaces 14.2 Fabrication of Microtextured Surfaces 14.2.1 Surface Materials 14.2.2 Methods of Fabrication of Superhydrophobic Surfaces 14.2.2.1 Plasma Treatment 14.2.2.2 Laser Ablation 14.2.2.3 Chemical Etching 14.3 Properties of Microtextured Surfaces 14.3.1 Antifogging 14.3.2 Antibacterial 14.3.3 Antireflection 14.3.4 Self-Cleaning 14.3.5 Effect of Temperature on Surface Properties 14.4 Applications 14.4.1 Anti-Icing 14.4.2 Drag Reduction 14.4.3 Anti-Corrosion 14.4.4 Solar Cells 14.4.5 Water-Repellent Textiles 14.5 Future Outlook Acknowledgments References 15 Structural Acrylic Adhesives: A Critical Review 15.1 Introduction 15.2 Compositions and Chemistries 15.2.1 Base Monomer 15.2.2 Thickeners and Elastomeric Components 15.2.3 Adhesive Additives 15.2.4 Initiators 15.2.5 Aerobically Curable Systems 15.2.6 Fillers 15.3 Physico-Mechanical Properties of SAAs 15.4 Adhesives for Low Surface Energy Materials 15.4.1 Initiators Based on Trialkylboranes 15.4.2 Alternative Types of Boron-Containing Initiators 15.4.3 Additives Modifying the Curing Stage 15.4.4 Hybrid SAAs 15.5 Comparison of the Properties of SAAs and Other Reactive Adhesives 15.6 Summary and Outlook References 16 Current Progress in Mechanically Durable Water-Repellent Surfaces: A Critical Review 16.1 Introduction 16.2 Fundamentals of Superhydrophobicity and SLIPs 16.2.1 Intermolecular Forces and Wetting 16.2.2 Young’s Contact Angle and Surface Chemistry Limitation 16.2.3 Superhydrophobicity by Texturing 16.2.4 Hysteresis and Tilt Angle 16.2.5 Slippery Liquid-Infused Porous Surfaces (SLIPs) 16.3 Techniques to Achieve Water-Repellent Surfaces 16.3.1 Superhydrophobic Composite Coatings 16.3.2 Superhydrophobic Textured Surfaces 16.3.3 Liquid-Impregnated Surfaces/SLIPs 16.4 Durability Testing 16.5 Future Trends 16.6 Summary References 17 Mussel-Inspired Underwater Adhesivesfrom Adhesion Mechanisms to Engineering Applications: A Critical Review 17.1 Introduction 17.2 Adhesion Mechanisms of Mussel and the Catechol Chemistry 17.2.1 Hydrogen Bonding and Metal Coordination 17.2.2 Hydrophobic Interaction 17.2.3 Cation/Anion/π-π Interactions 17.2.4 The Flexibility of the Molecular Chain 17.3 Catechol-Functionalized Adhesive Materials 17.3.1 Permanent/High-Strength Adhesives 17.3.2 Temporary/Smart Adhesives 17.3.2.1 pH-Responsive Adhesives 17.3.2.2 Electrically Responsive Adhesives 17.3.2.3 Thermally Responsive Adhesives 17.3.2.4 Photo-Responsive Adhesives 17.3.3 Applications 17.4 Summary and Outlook References 18 Wood Adhesives Based on Natural Resources: A Critical Review Part IV. Special Topics List of Abbreviations 18.1 Liquified Wood 18.2 Pyrolysis of Wood 18.3 Replacement of Formaldehyde in Resins 18.4 Unsaturated Oil Adhesives 18.5 Natural Polymers 18.5.1 Poly(lactic acid) (PLA) 18.5.2 Natural Rubber 18.6 Poly(hydroxyalkanoate)s (PHAs) 18.7 Thermoplastic Adhesives Based on Natural Resources 18.7.1 Polyurethanes (PURs) 18.7.2 Polyamides (PAs) 18.7.3 Epoxies 18.8 Cellulose Nanocrystals (CNCs) and Cellulose Nanofibrils (CNFs) 18.8.1 Cellulose Nanofibrils (CNFs) as Sole Adhesives 18.8.2 Cellulose Nanofibrils as Components of Adhesives 18.9 Cashew Nut Shell Liquid (CNSL) 18.10 Summary General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources (for further information see [1] References 19 Cold Atmospheric Pressure Plasma Technology for Modifying Polymers to Enhance Adhesion: A Critical Review 19.1 Introduction 19.2 Atmospheric Pressure Plasma Discharge 19.2.1 Corona Discharge 19.2.2 Dielectric Barrier Discharge (DBD) 19.2.3 Cold Atmospheric Pressure Plasma Jet (CAPPJ) 19.2.4 Polymer Surface Modification by CAPPJ 19.3 Experimental Setup for the Generation of Cold Atmospheric Pressure Plasma Jet 19.4 Methods and Materials for Surface Modification of Polymers 19.5 Direct Method for the Determination of Temperature of Cold Atmospheric Pressure Plasma Jet (CAPPJ) 19.6 Results and Discussion 19.6.1 Temperature Determination of Cold Atmospheric Pressure Plasma Jet (CAPPJ) 19.6.2 Electrical Characterization of the CAPPJ 19.6.2.1 Power Balance Method 19.6.2.2 Current Density Method 19.6.2.3 Determination of Energy Dissipation in the Cold Plasma Discharge per Cycle by the Lissajous Figure Method 19.6.3 Optical Characterization of CAPPJ 19.6.3.1 Line Intensity Ratio Method 19.6.3.2 Stark Broadening Method 19.6.3.3 Boltzmann Plot Method 19.6.3.4 Determination of the Rotational Temperature 19.6.3.5 Determination of the Vibrational Temperature 19.7 Surface Characterization/Adhesion Property of Polymers 19.7.1 Contact Angle Measurements and Surface Free Energy Determination 19.7.1.1 Poly (ethylene terephthalate) (PET) 19.7.1.2 Polypropylene (PP) 19.7.1.3 Polyamide (PA) 19.7.1.4 Polycarbonate (PC) 19.7.2 FTIR Analysis 19.7.2.1 Fourier Transform Infrared (FTIR) Analysis of PET 19.7.2.2 Fourier Transform Infrared (FTIR) Analysis of PP 19.7.3 SEM Analysis 19.7.3.1 SEM Images of the Control and APPJ Treated PET 19.7.3.2 SEM Images of the Control and APPJ Treated PP 19.8 Summary Acknowledgements Data Availability Conflict of Interest References