ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Process Equipment and Plant Design: Principles and Practices

دانلود کتاب تجهیزات فرایند و طراحی گیاه: اصول و شیوه ها

Process Equipment and Plant Design: Principles and Practices

مشخصات کتاب

Process Equipment and Plant Design: Principles and Practices

دسته بندی: انرژی
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9780128148853 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: 841 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Process Equipment and Plant Design: Principles and Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجهیزات فرایند و طراحی گیاه: اصول و شیوه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجهیزات فرایند و طراحی گیاه: اصول و شیوه ها

تجهیزات فرآیند و طراحی کارخانه: اصول و روش‌ها رویکردی جامع به سمت طراحی فرآیند در صنعت مهندسی شیمی دارد که با طراحی تجهیزات فرآیند فردی و پیکربندی آن به عنوان یک سیستم عملکردی کامل سروکار دارد. فصل‌ها سیستم‌ها و تجهیزات معمولی انتقال حرارت و انتقال جرم را شامل می‌شود که در برنامه درسی مهندسی شیمی گنجانده شده است، مانند مبدل‌های حرارتی، شبکه‌های مبدل حرارتی، تبخیرکننده‌ها، تقطیر، جذب، جذب، راکتورها و موارد دیگر. نویسندگان موضوعات اضافی مانند سیستم‌های خنک‌کننده صنعتی، استخراج، و موضوعات مربوط به ابزارهای فرآیند، لوله‌کشی و هیدرولیک، از جمله ابزار دقیق و اصول ایمنی را که تکمیل کننده رویه طراحی تجهیزات هستند و به رسیدن به طراحی کامل کارخانه کمک می‌کنند، گسترش داده‌اند. فصل‌ها در بخش‌های مربوط به فرآیندهای انتقال گرما و جرم، سیستم‌های واکنش، هیدرولیک کارخانه و مخازن فرآیند، لوازم جانبی کارخانه و ایمنی مهندسی و همچنین یک فصل جداگانه که نمونه‌هایی از طراحی فرآیند در کارخانه‌های کامل را نشان می‌دهد، مرتب شده‌اند. این مرجع جامع، شکاف بین صنعت و دانشگاه را پر می‌کند، در حالی که بهترین شیوه‌ها در طراحی، از جمله تئوری‌های مرتبط در طراحی فرآیند را بررسی می‌کند و این را به یک آغازگر ارزشمند برای فارغ‌التحصیلان تازه‌کار و متخصصانی که روی پروژه‌های طراحی در صنعت کار می‌کنند، تبدیل می‌کند.


توضیحاتی درمورد کتاب به خارجی

Process Equipment and Plant Design: Principles and Practices takes a holistic approach towards process design in the chemical engineering industry, dealing with the design of individual process equipment and its configuration as a complete functional system. Chapters cover typical heat and mass transfer systems and equipment included in a chemical engineering curriculum, such as heat exchangers, heat exchanger networks, evaporators, distillation, absorption, adsorption, reactors and more. The authors expand on additional topics such as industrial cooling systems, extraction, and topics on process utilities, piping and hydraulics, including instrumentation and safety basics that supplement the equipment design procedure and help to arrive at a complete plant design. The chapters are arranged in sections pertaining to heat and mass transfer processes, reacting systems, plant hydraulics and process vessels, plant auxiliaries, and engineered safety as well as a separate chapter showcasing examples of process design in complete plants. This comprehensive reference bridges the gap between industry and academia, while exploring best practices in design, including relevant theories in process design making this a valuable primer for fresh graduates and professionals working on design projects in the industry.



فهرست مطالب

Process Equipment and Plant Design: Principles and Practices
Copyright
Dedication
About the Authors
Preface
Acknowledgement
Introduction
1 . General aspects of process design
	1.1 Process
	1.2 Design problem and its documentation
	1.3 The design process
		Qualitative considerations can be
		Quantitative considerations
		Optimum design
		Design steps
			1.3.1 Deliverables
	1.4 Organisation of the Book
	Further reading
Introduction
2 . Heat transfer processes in industrial scale
	2.1 Introduction
	2.2 Exchanger types
		2.2.1 Recuperator
		2.2.2 Regenerator
		2.2.3 Fluidised bed exchanger
		2.2.4 Direct contact heat exchanger
	2.3 Flow arrangement
		2.3.1 Countercurrent flow exchanger
		2.3.2 Co-current flow/parallel flow exchanger
		2.3.3 Cross-flow exchanger
		2.3.4 Split flow exchanger
		2.3.5 Divided flow exchanger
		2.3.6 Multipass exchanger
	2.4 Exchanger selection
	2.5 Heat exchanger design methodology
		Process and design specifications
	2.6 Design overview for recuperators
		2.6.1 Thermal design
		The effectiveness-NTU method
	2.7 Estimation of overall design heat transfer coefficient
	Further reading
3 . Double pipe heat exchanger
	3.1 Introduction
	3.2 Design
		3.2.1 Input data
		3.2.2 Deliverables
		3.2.3 Codes and standards
		3.2.4 Guidelines to select inner and outer fluid
		3.2.5 Design considerations
		3.2.6 Thermal design
		3.2.7 Hydraulic design
	3.3 Series-parallel configuration of hairpins
	3.4 Design illustration
		3.4.1 Design steps
		3.4.2 Design example
	References
	Further reading
4 . Shell and tube heat exchanger
	4.1 Introduction
		4.1.1 General description
			Shell
			Exchanger Head(s)
			Tubes
			Tube sheet
			Baffle
			Tie rods and spacers
			Impingement baffle
			Multipass exchanger
			Shell passes
		4.1.2 Heat exchanger installations and commissioning
	4.2 Codes and standards
	4.3 Design considerations
		Process
		Mechanical
			4.3.1 Input data for design
			4.3.2 Design output
				Process design
				Mechanical details
				Fabrication details
	4.4 Design – FT method
	4.5 Pressure drop estimation
	4.6 Mechanical detailing
		4.6.1 Exchanger material
		4.6.2 Tube length
		4.6.3 Tube sheet details
		4.6.4 Tube pass pattern
		4.6.5 Finned tubes
		4.6.6 Segmental baffles (transverse baffles in BIS code)
		4.6.7 Tie rods
		4.6.8 Impingement baffle
		4.6.9 Shell dimensions
		4.6.10 Channel and channel cover
		4.6.11 Nozzles
		4.6.12 Exchanger support
	4.7 Design illustration
	Further reading
5 . Heat exchanger network analysis
	5.1 Introduction
	5.2 Energy-capital trade-off – two-stream problem
	5.3 Multi-stream problem
		5.3.1 Optimal ΔTmin
		5.3.2 Practical values of ΔTmin
	5.4 Pinch design analysis
		5.4.1 Locating the pinch using the problem table algorithm
		5.4.2 The pinch principle
		5.4.3 Design strategy
		5.4.4 Grid diagram
			Tick off heuristic
		5.4.5 Stream splitting in network design
		5.4.6 Network simplification: heat load loops and heat load paths
	5.5 Targeting for multiple utilities
	5.6 Design algorithm
	5.7 Threshold problems
	5.8 Data extraction
		5.8.1 Composite curve for non-linear CP
		5.8.2 Avoid mixing of streams at different temperatures
		5.8.3 Use effective temperatures
		5.8.4 True utility streams
	5.9 Applications
	5.10 Design illustration
		Composite curves
		Problem table algorithm
	Further reading
6 . Evaporators
	6.1 Introduction
	6.2 Components of an evaporation system
	6.3 Evaporator types
		6.3.1 Types of continuous evaporators
			Evaporators without heating surfaces
	6.4 Evaporator performance
		6.4.1 Multiple-effect evaporators
			Feeding arrangements
			Use of vapor as a “hot stream” in the plant
		6.4.2 Vapor recompression
		6.4.3 Heat recovery systems
		6.4.4 Evaporator selection
	6.5 Evaporator accessories
		6.5.1 Condensers
		6.5.2 Vent systems
			Salt removal
	6.6 Evaporator design
		6.6.1 Single-effect evaporation
		6.6.2 Multiple effect evaporation
			Optimum number of effects in a multiple-effect system
		6.6.3 Design data
			Elevation of boiling point (BPE)
				Boiling point elevation in multiple effect evaporators
			Enthalpy plots
			Tsteam & Tcon
			Steam pressure
			Pressure in the vapor space
			Influence of feed, steam and condensate temperature
		6.6.4 Design algorithm for multiple-effect evaporator
			Design input
			Design objective
			Design deliverables
			Design algorithm
	6.7 Design illustration
		Design example 1
			Process design deliverables
		Design example 2
			Deliverables
	Further reading
7 . Industrial cooling systems
	7.1 Introduction
	7.2 Cooling tower
		7.2.1 Classification
		Classification by build
		Classification based on air draft
		Classification based on airflow pattern
		Classification based on the heat transfer method
		7.2.2 Components of a typical cooling tower
		7.2.3 Cooling tower parameters
		7.2.4 Cooling water circuit in a process plant
		7.2.5 Codes and standards
		7.2.6 Thermal design
		7.2.7 Notes on design and operation
	7.3 Design illustration
		Summary of available data
		Tower selection
			Fill details
			Determination of operating L/G for the fill chosen
		Steps of calculation
			Fan power calculation
			Estimating head loss in the fill and water distributor level
			Estimating make up water (M) requirement
				Evaporation loss (E)
				Drift loss (D)
			Pump calculations
			Cooling tower sump
	Further reading
Introduction
8 . Interphase mass transfer
	8.1 Introduction
	8.2 Processes and equipment
	8.3 Process design and detailed design of the equipment
9 . Phase equilibria
	9.1 Introduction
	9.2 Representation of concentration
	9.3 Representation of equilibrium
		9.3.1 Graphical representation of equilibrium
		9.3.2 Mathematical representation of equilibrium
			VLE: Distillation
			Solubility: absorption and stripping
			GSE and LSE: adsorption
			LLE: extraction
	Further reading
10 . Absorption and stripping
	10.1 Introduction
	10.2 Tray column
		10.2.1 Graphical determination of the number of contacting stages
			Minimum required liquid flow rate (Lmin) in case of absorber for a given gas rate (G,G′)
			Approximations for low concentration system
		10.2.2 Absorption factor
	10.3 Packed column
		10.3.1 Packed column design based on mass transfer coefficient
		10.3.2 Driving force line
		10.3.3 Overall mass transfer coefficient
		10.3.4 Estimation of active bed height
		10.3.5 Design based on liquid-phase resistance
		10.3.6 Absorption accompanied by chemical reaction
	10.4 Design illustration
		Driving force lines
		Estimating mass transfer coefficients
	Further reading
11 . Distillation
	11.1 Introduction
	11.2 Conceptual design
	11.3 Detailed design
	11.4 Fractionator
		11.4.1 Process design of fractionating tower – equilibrium stage approach
		11.4.2 Binary fractionation
		11.4.3 Multicomponent distillation
	11.5 Design illustration – fractionator
	11.6 Flash distillation
		11.6.1 Design equations
		11.6.2 Design considerations
		11.6.3 Design steps
	11.7 Design illustration – flash distillation
	11.8 Batch distillation
		11.8.1 Design
		11.8.2 Design deliverables
		11.8.3 Design steps
	11.9 Design illustration – batch distillation
	Further reading
12 . Adsorption
	12.1 Introduction
		12.1.1 Modes of operation
			Stagewise operation
			Continuous contact operation
		12.1.2 Adsorption mechanisms
		12.1.3 Adsorption equilibrium
	12.2 Packed bed adsorption
		12.2.1 Breakthrough curve, breakthrough point, and bed exhaustion
		12.2.2 Desorption/regeneration
			Gas-phase adsorption
			Liquid-phase adsorption
		12.2.3 Adsorbent aging
		12.2.4 Bed design
			Rigorous methods
			Empirical or short-cut methods
			Pilot plant design
			Data/information required for design
			Operating parameters from pilot tests
				(a) Loading rate/filtration rate (LR) for liquid-phase applications
				(b) Superficial velocity (Us) for gas-phase applications
				(c) Empty bed contact time
				(d) Breakthrough time (tb)
				(e) Fraction of bed utilised (f)
				(f) Adsorbate loading (qs)
			Bed design
			Volume of fluid treated/change out period
			Pressure drop
			Bed configuration and mode of operation
	12.3 Design illustration
	Further reading
13 . Extraction
	13.1 Introduction
	13.2 Extractor types and selection
		13.2.1 Extractor types
			Stagewise contact
			Continuous contact
		13.2.2 Contactor selection
	13.3 Choice of solvent
	13.4 Design of continuous countercurrent contactors
		Flooding
		13.4.1 Calculation of the number of stages
		13.4.2 Design parameters for extraction towers
	13.5 Design of mixer-settler
		13.5.1 Holding time
		13.5.2 Power and mixing time
		13.5.3 Scale-up
		13.5.4 Flow mixers
	13.6 Design illustrations
	Further reading
14 . Column and column internals for gas–liquid and vapour–liquid contacting
	14.1 Introduction
	14.2 Tray towers
		14.2.1 Contacting trays
		Downcomer
		Outlet weir
		Liquid bypass baffles
		Bottom tray seal pan
		Weep holes
		Vapour disperser elements
		14.2.2 Choice of tray type
		14.2.3 Tray construction
		14.2.4 Efficient operation of contacting tray
	14.3 Tray design
		14.3.1 Bubble cap tray design
			Tower diameter
		Check for entrainment
		Tray passes
		Outlet weir
		Height over weir
		Downcomer area
		Cap size
		Number of caps
		Area fractions over tray
		Liquid gradient across tray
			Tray pressure drop (htray, mm of liquid)
		Check for vapour distribution
		Vapour velocity and corrected ‘approach to flooding’
		Downcomer pressure drop (hdc,prdrop, mm of liquid)
		Downcomer backup (hL,dc, mm of liquid, for all cross-flow trays)
		Velocity and residence time in downcomer
		Downcomer throw over the weir
		System (foaming) factors (applicable for all cross-flow trays)
		Weep holes
		14.3.2 Sieve tray design (cross-flow type – with downcomer)
			Steps of design
		14.3.3 Valve tray design
	14.4 Packed tower
		14.4.1 Choice of packing
			Packing types and size
		14.4.2 Liquid distribution
			Liquid distributor
		Redistributor and collector
		14.4.3 Bed support
		14.4.4 Flooding and pressure drop in randomly packed bed
		Bed diameter estimation based on flooding and pressure drop
		Pressure gradient
		Minimum wetting rate
	14.5 Packed tower design
	14.6 Chimney tray, reflux entry, feed tray and tower bottom
		14.6.1 Chimney tray
		14.6.2 Reflux entry arrangement on top tray
		14.6.3 Feed tray
		14.6.4 Tower bottom arrangement
	14.7 Design illustration
	Further reading
Introduction
15 . Reactors and reactor design
	15.1 Introduction
	15.2 Design of reacting system
		15.2.1 Reactor types
		15.2.2 Rate and extent of reaction
			Rate-limiting step
	15.3 Reactor design
		15.3.1 Reaction/process conditions
		15.3.2 Design deliverables
			Performance equation for idealized reactors
		15.3.3 Scale-up
		15.3.4 Bioreactors
			Sterilization
	15.4 Design illustration
	Further reading
Introduction
16 . Plant hydraulics
	16.1 Introduction
	16.2 Pumps
		16.2.1 Common pump types
			Centrifugal Pump
			Positive displacement pumps
			Reciprocating pumps
			Rotary pumps
			Diaphragm pump
		16.2.2 Pump performance and hydraulics
		16.2.3 Cavitation
			NPSH in centrifugal pump
				Liquid vapour pressure
			NPSH in reciprocating pumps
		16.2.4 Characteristic curve for centrifugal pumps
			Q-H curve
				Pumps in series and parallel
			Q-SHP (or BHP) Curve
				Q-NPSHRCurve
		16.2.5 System characteristic curve
		16.2.6 Adjusting centrifugal pump performance
		16.2.7 Characteristic curves for positive displacement pumps
		16.2.8 Pump selection
		16.2.9 Steps of design for a hydraulic circuit
	16.3 Compressors
		16.3.1 Compressor selection
		16.3.2 Centrifugal compressor
			Characteristic curve
		16.3.3 Compressor hydraulics
			Capacity and pressure ratio
			Power
				Head developed
			16.3.4 Design/sizing
			16.3.5 Capacity control
	16.4 Piping
		16.4.1 Piping codes
		16.4.2 Pipe size
		16.4.3 Piping services
		16.4.4 Pipe rack
		16.4.5 Pipe joints
		16.4.6 Pipe fittings
			Pressure relief–safety devices
			Other fittings
		16.4.7 Pressure drop in pipeline
		16.4.8 Few typical process piping systems
			Purge out operation
			Vent and drain system
			Flushing connections
			Control valve installation
			Steam trap
			Good practices for piping layout
	16.5 Hydraulic calculations
	Further reading
17 . Process vessels
	17.1 Unfired pressure vessels
	17.2 Vessel components and fixtures
	17.3 Mechanical design
		17.3.1 Design Parameters
		17.3.2 Vessel sizing
			Vapour-liquid separator
			Separator with wire mesh mist eliminator (demister pad)
			Reflux drum
			Liquid-liquid separator
		17.3.3 Nozzle dimensions and location
		17.3.4 Manhole specifications
		17.3.5 Wall thickness
	17.4 Design illustrations
	Further reading
Introduction
18 . Utility services in process plants
	18.1 Introduction
	18.2 Fuel systems
		18.2.1 Fuel gas
		18.2.2 Fuel oil
		18.2.3 Design of fuel system
	18.3 Electrical power
	18.4 Steam
	18.5 Compressed air
		18.5.1 Air supply scheme
		18.5.2 Design illustration – compressed air system
	18.6 Inert gases
	18.7 Water
	18.8 Efficient use of utilities
	Further reading
19 . Plant instrumentation and control
	19.1 Introduction
	19.2 Control loop
		19.2.1 Feeback and feedforward
			Selection–feedback versus feedforward
		19.2.2 Characteristic features of a process being controlled
	19.3 Analog signals–pneumatic and electronic
	19.4 Control algorithms
		19.4.1 P, PI and PID controllers
			Choice of P, PI, or PID controller
		19.4.2 Few advanced configurations of controllers
			Cascade control
			Split range control
	19.5 Measurement of process parameters
		19.5.1 Temperature measurement
			Thermocouple versus RTD
		19.5.2 Pressure measurement
			Measurement of differential pressure
		19.5.3 Flow measurement
		19.5.4 Level measurement
	19.6 Control valves
		19.6.1 Fail-open and fail-close valves
		19.6.2 Valve size
	19.7 Instrumentation for safety
	19.8 Distributed control system (DCS)
	19.9 Control schemes for common processes
		19.9.1 Distillation control and instrumentation
		19.9.2 CSTR instrumentation and control
	Further reading
20 . Engineered safety
	20.1 Introduction
	20.2 Hazardous area classification
	20.3 Trips and alarms
	20.4 Blowdown and flare
		20.4.1 Blowdown
		20.4.2 Safety and pressure relief valves
		20.4.3 Flare system
	20.5 HAZOP
		Problem statement
		Report
			Major recommendations
	Worksheets
		Worksheet WS–1
		Worksheet WS–2
	Further reading
Introduction
21 . Process packages
	21.1 Process package deliverables
	21.2 Examples
		21.2.1 Design illustration 1
			Design of 10,000 MT/Annum plant to manufacture Ethyl acetate from Ethanol
		21.2.2 Design illustration 2
			Design of a facility for a refinery to treat 8000m3/d of wastewater
	Further reading
Graphical symbols for piping systems and plant
	Based on BS 1553: PART 1: 1977
		Scope
Appendix B: Corrosion chart
Physical property data bank
Conversion factors
Typical fouling factors in m2K/W compiled from various sources
Heat exchanger tube sizes and other details
List of different standards commonly used
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




نظرات کاربران