دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [v1.9 ed.]
نویسندگان: Jason Brownlee
سری: Machine Learning Mastery
ناشر:
سال نشر: 2020
تعداد صفحات: 319
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Probability for Machine Learning - Discover How To Harness Uncertainty With Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب احتمال یادگیری ماشین - کشف نحوه مهار عدم قطعیت با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Copyright Contents Preface I Introduction II Background What is Probability? Tutorial Overview Uncertainty is Normal Probability of an Event Probability Theory Two Schools of Probability Further Reading Summary Uncertainty in Machine Learning Tutorial Overview Uncertainty in Machine Learning Noise in Observations Incomplete Coverage of the Domain Imperfect Model of the Problem How to Manage Uncertainty Further Reading Summary Why Learn Probability for Machine Learning Tutorial Overview Reasons to NOT Learn Probability Class Membership Requires Predicting a Probability Some Algorithms Are Designed Using Probability Models Are Trained Using a Probabilistic Framework Models Can Be Tuned With a Probabilistic Framework Probabilistic Measures Are Used to Evaluate Model Skill One More Reason Further Reading Summary III Foundations Joint, Marginal, and Conditional Probability Tutorial Overview Probability for One Random Variable Probability for Multiple Random Variables Probability for Independence and Exclusivity Further Reading Summary Intuition for Joint, Marginal, and Conditional Probability Tutorial Overview Joint, Marginal, and Conditional Probabilities Probabilities of Rolling Two Dice Probabilities of Weather in Two Cities Further Reading Summary Advanced Examples of Calculating Probability Tutorial Overview Birthday Problem Boy or Girl Problem Monty Hall Problem Further Reading Summary IV Distributions Probability Distributions Tutorial Overview Random Variables Probability Distribution Discrete Probability Distributions Continuous Probability Distributions Further Reading Summary Discrete Probability Distributions Tutorial Overview Discrete Probability Distributions Bernoulli Distribution Binomial Distribution Multinoulli Distribution Multinomial Distribution Further Reading Summary Continuous Probability Distributions Tutorial Overview Continuous Probability Distributions Normal Distribution Exponential Distribution Pareto Distribution Further Reading Summary Probability Density Estimation Tutorial Overview Probability Density Summarize Density With a Histogram Parametric Density Estimation Nonparametric Density Estimation Further Reading Summary V Maximum Likelihood Maximum Likelihood Estimation Tutorial Overview Problem of Probability Density Estimation Maximum Likelihood Estimation Relationship to Machine Learning Further Reading Summary Linear Regression With Maximum Likelihood Estimation Tutorial Overview Linear Regression Maximum Likelihood Estimation Linear Regression as Maximum Likelihood Least Squares and Maximum Likelihood Further Reading Summary Logistic Regression With Maximum Likelihood Estimation Tutorial Overview Logistic Regression Logistic Regression and Log-Odds Maximum Likelihood Estimation Logistic Regression as Maximum Likelihood Further Reading Summary Expectation Maximization (EM Algorithm) Tutorial Overview Problem of Latent Variables for Maximum Likelihood Expectation-Maximization Algorithm Gaussian Mixture Model and the EM Algorithm Example of Gaussian Mixture Model Further Reading Summary Probabilistic Model Selection with AIC, BIC, and MDL Tutorial Overview The Challenge of Model Selection Probabilistic Model Selection Akaike Information Criterion Bayesian Information Criterion Minimum Description Length Worked Example for Linear Regression Further Reading Summary VI Bayesian Probability Introduction to Bayes Theorem Tutorial Overview What is Bayes Theorem? Naming the Terms in the Theorem Example: Elderly Fall and Death Example: Email and Spam Detection Example: Liars and Lie Detectors Further Reading Summary Bayes Theorem and Machine Learning Tutorial Overview Bayes Theorem of Modeling Hypotheses Density Estimation Maximum a Posteriori MAP and Machine Learning Bayes Optimal Classifier Further Reading Summary How to Develop a Naive Bayes Classifier Tutorial Overview Conditional Probability Model of Classification Simplified or Naive Bayes How to Calculate the Prior and Conditional Probabilities Worked Example of Naive Bayes 5 Tips When Using Naive Bayes Further Reading Summary How to Implement Bayesian Optimization Tutorial Overview Challenge of Function Optimization What Is Bayesian Optimization How to Perform Bayesian Optimization Hyperparameter Tuning With Bayesian Optimization Further Reading Summary Bayesian Belief Networks Tutorial Overview Challenge of Probabilistic Modeling Bayesian Belief Network as a Probabilistic Model How to Develop and Use a Bayesian Network Example of a Bayesian Network Bayesian Networks in Python Further Reading Summary VII Information Theory Information Entropy Tutorial Overview What Is Information Theory? Calculate the Information for an Event Calculate the Information for a Random Variable Further Reading Summary Divergence Between Probability Distributions Tutorial Overview Statistical Distance Kullback-Leibler Divergence Jensen-Shannon Divergence Further Reading Summary Cross-Entropy for Machine Learning Tutorial Overview What Is Cross-Entropy? Difference Between Cross-Entropy and KL Divergence How to Calculate Cross-Entropy Cross-Entropy as a Loss Function Difference Between Cross-Entropy and Log Loss Further Reading Summary Information Gain and Mutual Information Tutorial Overview What Is Information Gain? Worked Example of Calculating Information Gain Examples of Information Gain in Machine Learning What Is Mutual Information? How Are Information Gain and Mutual Information Related? Further Reading Summary VIII Classification How to Develop and Evaluate Naive Classifier Strategies Tutorial Overview Naive Classifier Predict a Random Guess Predict a Randomly Selected Class Predict the Majority Class Naive Classifiers in scikit-learn Further Reading Summary Probability Scoring Metrics Tutorial Overview Log Loss Score Brier Score ROC AUC Score Further Reading Summary When to Use ROC Curves and Precision-Recall Curves Tutorial Overview Predicting Probabilities What Are ROC Curves? ROC Curves and AUC in Python What Are Precision-Recall Curves? Precision-Recall Curves in Python When to Use ROC vs. Precision-Recall Curves? Further Reading Summary How to Calibrate Predicted Probabilities Tutorial Overview Predicting Probabilities Calibration of Predictions How to Calibrate Probabilities in Python Worked Example of Calibrating SVM Probabilities Further Reading Summary IX Appendix Getting Help Probability on Wikipedia Probability Textbooks Probability and Machine Learning Ask Questions About Probability How to Ask Questions Contact the Author How to Setup Python on Your Workstation Tutorial Overview Download Anaconda Install Anaconda Start and Update Anaconda Further Reading Summary Basic Math Notation Tutorial Overview The Frustration with Math Notation Arithmetic Notation Greek Alphabet Sequence Notation Set Notation Other Notation Tips for Getting More Help Further Reading Summary X Conclusions How Far You Have Come