ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Probability for Machine Learning - Discover How To Harness Uncertainty With Python

دانلود کتاب احتمال یادگیری ماشین - کشف نحوه مهار عدم قطعیت با پایتون

Probability for Machine Learning - Discover How To Harness Uncertainty With Python

مشخصات کتاب

Probability for Machine Learning - Discover How To Harness Uncertainty With Python

ویرایش: [v1.9 ed.] 
نویسندگان:   
سری: Machine Learning Mastery 
 
ناشر:  
سال نشر: 2020 
تعداد صفحات: 319 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Probability for Machine Learning - Discover How To Harness Uncertainty With Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب احتمال یادگیری ماشین - کشف نحوه مهار عدم قطعیت با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
Contents
Preface
I Introduction
II Background
	What is Probability?
		Tutorial Overview
		Uncertainty is Normal
		Probability of an Event
		Probability Theory
		Two Schools of Probability
		Further Reading
		Summary
	Uncertainty in Machine Learning
		Tutorial Overview
		Uncertainty in Machine Learning
		Noise in Observations
		Incomplete Coverage of the Domain
		Imperfect Model of the Problem
		How to Manage Uncertainty
		Further Reading
		Summary
	Why Learn Probability for Machine Learning
		Tutorial Overview
		Reasons to NOT Learn Probability
		Class Membership Requires Predicting a Probability
		Some Algorithms Are Designed Using Probability
		Models Are Trained Using a Probabilistic Framework
		Models Can Be Tuned With a Probabilistic Framework
		Probabilistic Measures Are Used to Evaluate Model Skill
		One More Reason
		Further Reading
		Summary
III Foundations
	Joint, Marginal, and Conditional Probability
		Tutorial Overview
		Probability for One Random Variable
		Probability for Multiple Random Variables
		Probability for Independence and Exclusivity
		Further Reading
		Summary
	Intuition for Joint, Marginal, and Conditional Probability
		Tutorial Overview
		Joint, Marginal, and Conditional Probabilities
		Probabilities of Rolling Two Dice
		Probabilities of Weather in Two Cities
		Further Reading
		Summary
	Advanced Examples of Calculating Probability
		Tutorial Overview
		Birthday Problem
		Boy or Girl Problem
		Monty Hall Problem
		Further Reading
		Summary
IV Distributions
	Probability Distributions
		Tutorial Overview
		Random Variables
		Probability Distribution
		Discrete Probability Distributions
		Continuous Probability Distributions
		Further Reading
		Summary
	Discrete Probability Distributions
		Tutorial Overview
		Discrete Probability Distributions
		Bernoulli Distribution
		Binomial Distribution
		Multinoulli Distribution
		Multinomial Distribution
		Further Reading
		Summary
	Continuous Probability Distributions
		Tutorial Overview
		Continuous Probability Distributions
		Normal Distribution
		Exponential Distribution
		Pareto Distribution
		Further Reading
		Summary
	Probability Density Estimation
		Tutorial Overview
		Probability Density
		Summarize Density With a Histogram
		Parametric Density Estimation
		Nonparametric Density Estimation
		Further Reading
		Summary
V Maximum Likelihood
	Maximum Likelihood Estimation
		Tutorial Overview
		Problem of Probability Density Estimation
		Maximum Likelihood Estimation
		Relationship to Machine Learning
		Further Reading
		Summary
	Linear Regression With Maximum Likelihood Estimation
		Tutorial Overview
		Linear Regression
		Maximum Likelihood Estimation
		Linear Regression as Maximum Likelihood
		Least Squares and Maximum Likelihood
		Further Reading
		Summary
	Logistic Regression With Maximum Likelihood Estimation
		Tutorial Overview
		Logistic Regression
		Logistic Regression and Log-Odds
		Maximum Likelihood Estimation
		Logistic Regression as Maximum Likelihood
		Further Reading
		Summary
	Expectation Maximization (EM Algorithm)
		Tutorial Overview
		Problem of Latent Variables for Maximum Likelihood
		Expectation-Maximization Algorithm
		Gaussian Mixture Model and the EM Algorithm
		Example of Gaussian Mixture Model
		Further Reading
		Summary
	Probabilistic Model Selection with AIC, BIC, and MDL
		Tutorial Overview
		The Challenge of Model Selection
		Probabilistic Model Selection
		Akaike Information Criterion
		Bayesian Information Criterion
		Minimum Description Length
		Worked Example for Linear Regression
		Further Reading
		Summary
VI Bayesian Probability
	Introduction to Bayes Theorem
		Tutorial Overview
		What is Bayes Theorem?
		Naming the Terms in the Theorem
		Example: Elderly Fall and Death
		Example: Email and Spam Detection
		Example: Liars and Lie Detectors
		Further Reading
		Summary
	Bayes Theorem and Machine Learning
		Tutorial Overview
		Bayes Theorem of Modeling Hypotheses
		Density Estimation
		Maximum a Posteriori
		MAP and Machine Learning
		Bayes Optimal Classifier
		Further Reading
		Summary
	How to Develop a Naive Bayes Classifier
		Tutorial Overview
		Conditional Probability Model of Classification
		Simplified or Naive Bayes
		How to Calculate the Prior and Conditional Probabilities
		Worked Example of Naive Bayes
		5 Tips When Using Naive Bayes
		Further Reading
		Summary
	How to Implement Bayesian Optimization
		Tutorial Overview
		Challenge of Function Optimization
		What Is Bayesian Optimization
		How to Perform Bayesian Optimization
		Hyperparameter Tuning With Bayesian Optimization
		Further Reading
		Summary
	Bayesian Belief Networks
		Tutorial Overview
		Challenge of Probabilistic Modeling
		Bayesian Belief Network as a Probabilistic Model
		How to Develop and Use a Bayesian Network
		Example of a Bayesian Network
		Bayesian Networks in Python
		Further Reading
		Summary
VII Information Theory
	Information Entropy
		Tutorial Overview
		What Is Information Theory?
		Calculate the Information for an Event
		Calculate the Information for a Random Variable
		Further Reading
		Summary
	Divergence Between Probability Distributions
		Tutorial Overview
		Statistical Distance
		Kullback-Leibler Divergence
		Jensen-Shannon Divergence
		Further Reading
		Summary
	Cross-Entropy for Machine Learning
		Tutorial Overview
		What Is Cross-Entropy?
		Difference Between Cross-Entropy and KL Divergence
		How to Calculate Cross-Entropy
		Cross-Entropy as a Loss Function
		Difference Between Cross-Entropy and Log Loss
		Further Reading
		Summary
	Information Gain and Mutual Information
		Tutorial Overview
		What Is Information Gain?
		Worked Example of Calculating Information Gain
		Examples of Information Gain in Machine Learning
		What Is Mutual Information?
		How Are Information Gain and Mutual Information Related?
		Further Reading
		Summary
VIII Classification
	How to Develop and Evaluate Naive Classifier Strategies
		Tutorial Overview
		Naive Classifier
		Predict a Random Guess
		Predict a Randomly Selected Class
		Predict the Majority Class
		Naive Classifiers in scikit-learn
		Further Reading
		Summary
	Probability Scoring Metrics
		Tutorial Overview
		Log Loss Score
		Brier Score
		ROC AUC Score
		Further Reading
		Summary
	When to Use ROC Curves and Precision-Recall Curves
		Tutorial Overview
		Predicting Probabilities
		What Are ROC Curves?
		ROC Curves and AUC in Python
		What Are Precision-Recall Curves?
		Precision-Recall Curves in Python
		When to Use ROC vs. Precision-Recall Curves?
		Further Reading
		Summary
	How to Calibrate Predicted Probabilities
		Tutorial Overview
		Predicting Probabilities
		Calibration of Predictions
		How to Calibrate Probabilities in Python
		Worked Example of Calibrating SVM Probabilities
		Further Reading
		Summary
IX Appendix
	Getting Help
		Probability on Wikipedia
		Probability Textbooks
		Probability and Machine Learning
		Ask Questions About Probability
		How to Ask Questions
		Contact the Author
	How to Setup Python on Your Workstation
		Tutorial Overview
		Download Anaconda
		Install Anaconda
		Start and Update Anaconda
		Further Reading
		Summary
	Basic Math Notation
		Tutorial Overview
		The Frustration with Math Notation
		Arithmetic Notation
		Greek Alphabet
		Sequence Notation
		Set Notation
		Other Notation
		Tips for Getting More Help
		Further Reading
		Summary
X Conclusions
	How Far You Have Come




نظرات کاربران