دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021 نویسندگان: Pradip Kumar Das (editor), Hrudaya Kumar Tripathy (editor), Shafiz Affendi Mohd Yusof (editor) سری: ISBN (شابک) : 9811610061, 9789811610066 ناشر: Springer سال نشر: 2021 تعداد صفحات: 219 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Privacy and Security Issues in Big Data: An Analytical View on Business Intelligence (Services and Business Process Reengineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسائل مربوط به حریم خصوصی و امنیت در کلان داده: دیدگاهی تحلیلی در مورد هوش تجاری (خدمات و مهندسی مجدد فرآیندهای کسب و کار) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر نگرانیهای مربوط به حریم خصوصی و امنیت در دادههای بزرگ تمرکز دارد و بین حریم خصوصی و امنیت و الزامات حریم خصوصی در دادههای بزرگ تفاوت قائل میشود. این بر نتایج بهدستآمده پس از استفاده از یک مطالعه نقشهبرداری سیستماتیک و پیادهسازی امنیت در دادههای بزرگ برای استفاده در کسبوکار تحت ایجاد «هوش تجاری» تمرکز دارد. فصلها با تعریف دادههای بزرگ شروع میشوند، بحث در مورد اینکه چرا امنیت در زیرساختهای تجاری استفاده میشود و چگونه میتوان امنیت را بهبود بخشید. در این کتاب، برخی از تکنیکهای امنیت داده و حفاظت از دادهها متمرکز شدهاند و چالشها و پیشنهاداتی را برای برآورده کردن الزامات محاسبات، قابلیتهای ارتباطی و ذخیرهسازی برای دادهکاوی و برنامههای تحلیلی با دادههای انبوه بزرگ در تجارت ارائه میکند.
This book focuses on privacy and security concerns in big data and differentiates between privacy and security and privacy requirements in big data. It focuses on the results obtained after applying a systematic mapping study and implementation of security in the big data for utilizing in business under the establishment of “Business Intelligence”. The chapters start with the definition of big data, discussions why security is used in business infrastructure and how the security can be improved. In this book, some of the data security and data protection techniques are focused and it presents the challenges and suggestions to meet the requirements of computing, communication and storage capabilities for data mining and analytics applications with large aggregate data in business.
Preface Contents About the Editors 1 Security in Big Data: A Succinct Survey 1 Introduction 2 Big Data Security 3 Background Study 4 Solution to security in Big Data 5 Analysis of Different Privacy-Preserving Techniques 6 Big Data Security in Agriculture and Farming 7 Conclusion References 2 Big Data-Driven Privacy and Security Issues and Challenges 1 Introduction 2 Big Data and Their Characteristics 3 Big Data-Driven Security 4 Some Imperative Security Issues and Challenges 4.1 AI Applications and Big Data Security 4.2 Fake Data Generation and Fake Mappers 4.3 Fake Mappers 4.4 Granular Access Control 4.5 Data Provenance 4.6 Real-Time Big Data Analytics Security Concerns 4.7 Big Data and IoT Security Concerns 4.8 Cloud and Big Data Security Concerns 4.9 Summary 5 Big Data-Driven Privacy 5.1 Some Good Measures 5.2 Challenges and Recommendations 6 Research in the Big Data-Driven Privacy and Security 6.1 Some Good Concerns Related to Big Data-Driven Privacy and Security Research References 3 Big Data Process-Based Security and Privacy Issues and Measures 1 Introduction 2 Challenges in Applying Security Over Big Data 2.1 Data Source 2.2 Data Mapper 2.3 Data Warehouse 3 Proposed Algorithm to Eliminate Fake Data 4 Data Analysis 5 Feature Extraction 5.1 Feature Extraction with Moment Functions 6 Feature Extraction with Neural Networks 7 Feature Extraction with Clustering 8 Conclusion References 4 Exploring and Presenting Security Measures in Big Data Paradigm 1 Introduction 1.1 What Is Big Data? 1.2 Examples of Big Data 1.3 Different Forms of Big Data 1.4 Characteristics of Big Data 2 Privacy in Big Data 2.1 Privacy Threats in Big Data 2.2 Privacy Issues in Big Data 2.3 Privacy Strategies in Big Data 2.4 Big Data Privacy Tool Features 2.5 Big Data Privacy Preservation Techniques 3 Security in Big Data 3.1 Security Issues in Big Data 3.2 Security Challenges in Big Data 3.3 Security Techniques for Big Data 4 Conclusion References 5 Comparative Analysis of Anonymization Techniques 1 Introduction 2 Anonymization of Data 3 Prevailing Illustrations of Data Anonymization 4 Data Anonymization Techniques 5 Comparative Analysis 6 Conclusion and Future Work References 6 Standardization of Big Data and Its Policies 1 Introduction 2 Conventional Data Privacy Standards Versus Big Data Privacy 3 The Drive for Self-Service and the Necessity for the Protection of Big Data 3.1 Privacy and Security Issues 3.2 Privacy Standards in a Big Data World 3.3 Privacy of Big Data in the Data Production Process 3.4 Privacy of Big Data in the Data Storage Phase 3.5 Privacy of Big Data in Processing of Data 4 New Privacy Security Approaches in Big Data 4.1 Differential Privacy 4.2 Identity-Based Anonymization 4.3 Apriori Algorithm Privacy-Preservation Algorithm Within the MapReduce Framework 4.4 Privacy-Preserving Publishing Big Data 4.5 Improving the k-anonymity and I-diversity Privacy Model 5 Global Data Privacy Initiatives 6 Access, Confirmation, and Correction Rights 6.1 Rights to Objection, Restriction, and Portability 6.2 The Right to Be Forgotten 6.3 Cross-Border Transfer of Personal Data 6.4 Benefits of Enforcement 6.5 Building an AI Ecosystem 7 Brief Review of Indian Personal Data Protection Bill, 2018s 8 Conclusion References 7 Privacy-Preserving Cryptographic Model for Big Data Analytics 1 Introduction 1.1 Big-Data Privacy and Security 2 Related Work 2.1 Hadoop Secure Map Reduce Model 3 Proposed Cryptography-Based Environment 3.1 Data Encryption Standard 3.2 RSA Algorithm 3.3 Encryption and Decryption at Multiple Levels 4 Implementation of MLED 5 Experimental Result of the Cryptosystems 6 Conclusion and Future Scope References 8 Application of Big Data Analytics in Healthcare Industry Along with Its Security Issues 1 Introduction 2 Background 2.1 History of Big Data Analytics 2.2 Architecture of Big Data Analytics 2.3 Capability of Big Data Analytics 2.4 Conceptualization of the Potential Benefits in the Use of Big Data Analytics 3 Research Methodology 3.1 Case Collection 3.2 Research Approach and Procedure 4 The Strategies to Get Success in Big Data Analytics 4.1 Importance of Big Data Analytics in the Healthcare Industry 4.2 Big Data Ecosystem Designed for Healthcare 5 Potential Application Areas 5.1 Big Data Used for Medical Image Processing 5.2 Medical Signal Analytics 5.3 Genomics: Emerging Big Data Applications 6 Privacy Versus Security in Health Care 6.1 Issues Related to Security and Privacy 6.2 Solutions 7 Limitation and Future Research 8 Conclusion References 9 An Analytical Perspective of Machine Learning in Cybersecurity 1 Introduction 2 The Security Concerns 3 Existing Methods of Security 4 Role of Machine Learning in Dealing with Security Breaches 5 Challenges ML Faces in Cybersecurity 6 Demonstration of an Intelligent Cybersecurity Model 6.1 Security Data Collection 6.2 Security Data Preparation 6.3 Machine Learning-Based Security Modeling 6.4 Incremental Learning and Dynamism 7 Common Machine Learning Algorithms that Are Used in Cybersecurity 7.1 Supervised Learning 7.2 Unsupervised Learning 7.3 Neural Networks and Deep Learning 7.4 Other Learning Techniques 8 Deep Learning Methods in Cybersecurity 8.1 Malware 8.2 Domain Generation Algorithms and Botnet Detection 8.3 Drive-by Download Attacks 8.4 File Type Identification 8.5 Organization Traffic Identification 8.6 SPAM Identification 8.7 Border Gateway Protocol Anomaly Detection 8.8 User Authentication 9 Conclusion References 10 Business Intelligence Influenced Customer Relationship Management in Telecommunication Industry and Its Security Challenges 1 Introduction 2 Role of Big Data in Business Intelligence 3 CRM and BI in Telecommunication Industry 4 Security Challenges Pertinent to CRM and Telecommunication Industry 4.1 Preventive Measures Against the Security Issues 4.2 Proposed Framework 5 Conclusion References 11 Data Protection and Data Privacy Act for BIG DATA Governance 1 Introduction 2 Data Protection and Data Privacy Act 2.1 Introduction to Data Protection and Data Privacy Act 2.2 Personal Data 3 Data Protection 3.1 Purpose of Data Protection 3.2 Principles of Data Protection 3.3 Available Data Protection and Data Privacy Acts 3.4 Current Data Protection Practices 4 Data Privacy 4.1 Privacy Policy 4.2 Data Protection Through Data Security 4.3 Data Security Technologies for Data Protection 4.4 Existing Data Protection and Data Privacy Acts Policies Acts for Big Data 5 Current Data Security Challenges in Big Data Protection 5.1 Challenges in Using Internet of Things (IoT) 5.2 Challenges in Using Hadoop Technology 5.3 Challenges in Using Cloud Computing 6 Data Security Technologies for Data Protection and Data Privacy of Big Data References