دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Binod Kumar Kanaujia
سری:
ISBN (شابک) : 2020024665, 9780367420451
ناشر: Taylor & Francis
سال نشر: 2020
تعداد صفحات: 463
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 38 مگابایت
در صورت تبدیل فایل کتاب Printed Antennas: Theory and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آنتن های چاپی: تئوری و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Basic Theory and Design of Printed Antennas 1.1 Evolution and Upcoming Growth of Printed Antennas 1.2 Features of Printed Antennas 1.2.1 Feeding Techniques 1.2.1.1 Coaxial Feeding 1.2.1.2 Microstrip Feeding 1.2.1.3 Proximity-Coupled Feeding 1.2.1.4 Aperture-Coupled Feeding 1.2.2 Performance Factors of Printed Antennas 1.2.2.1 Radiation Pattern 1.2.2.2 Directivity 1.2.2.3 Antenna Gain 1.2.2.4 Bandwidth 1.2.2.5 Polarization 1.2.2.6 Axial Ratio 1.3 Characteristics of Printed Antennas 1.3.1 Different Shapes of Printed Antennas 1.3.2 General Characteristics of Basic Patches 1.3.2.1 The Rectangular Patch 1.3.2.2 The Circular Patch 1.3.2.3 The Triangular Patch 1.3.2.4 Annular Ring Patch 1.4 Field of Applications for Printed Antennas 1.4.1 Advantages and Disadvantages of Printed Antennas 1.5 Techniques Developed for Low-Profile Printed Antennas 1.5.1 Features of Printed Antenna Technology 1.5.2 Basic Issues and Design Limitations 1.6 Analysis Methods for Some Common Patches 1.6.1 Analysis of Rectangular Patch Antenna by Transmission Line Model 1.6.2 Analysis of Circular Patch Antenna by Cavity Model 1.7 Special Measurement Techniques for Printed Antennas 1.7.1 Substrate Properties 1.7.2 Connector Characterization 1.7.3 Measurements of Printed Lines and Networks 1.7.4 Near-Field Probing 1.7.5 Efficiency Measurement 1.8 Summary Remarks References Chapter 2 Latest Trends in the Field of Printed Antennas 2.1 Introduction 2.2 Latest Research Areas in the Field of Printed Antennas 2.2.1 High-Gain Printed Antennas 2.2.2 Super-Wideband Printed Antennas 2.2.3 Printed Antennas with Circular Polarization (CP) Features 2.2.4 ECC Reduction in MIMO Printed Antenna 2.2.5 Printed Antenna with Low RCS Value 2.2.6 Printed Antenna Design for 5G Applications 2.3 Conclusion References Chapter 3 Radiation Pattern Agility of Printed Antennas 3.1 Introduction 3.2 Types of Reconfigurable Antennas 3.3 Microwave RF Switches 3.3.1 PIN Diode Switches 3.3.2 Varactor Diode 3.3.3 Microelectromechanical Systems 3.4 PIN Diode-Based Reconfigurable Patch Antenna for Pattern Agility 3.5 Conclusion References Chapter 4 Band Hopping in Printed Antennas 4.1 Introduction 4.2 Theory of MOS Loaded CMSA with an Airgap 4.2.1 Metal Oxide Semiconductor 4.2.2 Double MOS Loaded Circular Microstrip Antenna with an Airgap 4.2.3 Specifications of Double MOS Loaded CMSA with an Airgap 4.2.4 Radiation Pattern of CMSA 4.2.5 Properties of Double MOS Loaded CMSA with an Airgap 4.3 BST Varactor Diode Loaded Stacked CMSA 4.3.1 Analysis of Upper Patch 4.3.2 Analysis of Lower Patch 4.3.3 Staked Circular Patch 4.3.4 BST Varactor Diode Loaded Stacked Microstrip Patch 4.3.5 Radiation Pattern of Stacked CMSA 4.3.6 Specifications of BST Varactor Diode Loaded Stacked CMSA 4.3.7 Properties of BST Varactor Diode Loaded Stacked CMSA 4.4 Conclusion References Chapter 5 Pattern and Polarization Diversity in Antennas 5.1 Introduction 5.1.1 Pattern Diversity 5.1.2 Effect of Pattern Diversity on Diversity Gain (DG) and Cross-Envelope Correlation Coefficient (ECC) 5.2 Polarization Diversity 5.2.1 Diversity Gain of Polarization Diversity system 5.2.2 If Two Orthogonal Components are Transmitted 5.2.3 If a Single Linearly Polarized Component is Transmitted 5.2.4 If a Circularly Polarized Antenna Transmits a Right-Hand Circular Polarization (RHCP) Component 5.2.5 If the Radiated Signal is Obliquely Polarized 5.3 Massive MIMO Antennas 5.4 Conclusion References Chapter 6 Compact Printed Antenna Designs: Need for UWB Communications 6.1 Introduction 6.2 An Asymmetric U-shaped Printed Monopole Antenna Embedded with a T-shaped Strip 6.2.1 Antenna Configuration and Its Specifications 6.2.2 Parametric Study of the Antenna 6.2.2.1 Effect of the Radiating Patch 6.2.2.2 Effect of the Gap between the Ground Plane and Radiating Patch 6.2.2.3 Effect of the Ground Plane Structure 6.2.3 Comparative Results of the Antenna 6.3 Small Size Scarecrow-Shaped CPW- and Microstrip Line-Fed UWB Antennas 6.3.1 CPW-Fed Scarecrow-Shaped Patch Antenna 6.3.1.1 Antenna Design 6.3.1.2 Parametric Study 6.3.1.3 Radiation Pattern of the CPW-Fed Antenna 6.3.2 Microstrip Line-Fed UWB Antenna 6.3.2.1 Antenna Design 6.3.2.2 Antenna Results 6.3.2.3 Radiation Pattern of the Microstrip Line-Fed Antenna 6.4 A Half-Cut Design of a Low-Profile UWB Planar Antenna 6.4.1 Development of Antenna and Its Optimization 6.4.2 Return Loss of the Antenna 6.4.3 PMW Technique and Current Distribution Analysis 6.4.4 Antenna Gain and Group Delay 6.4.5 Radiation Characteristics 6.5 A Modified Microstrip Line-Fed Compact UWB Printed Antenna 6.5.1 Antenna Design 6.5.2 Parametric Study of the Designed Antenna 6.5.3 Antenna Fabrication and Results 6.5.3.1 VSWR Measurement 6.5.3.2 Realized Gain and Radiation Efficiency 6.5.3.3 Radiation Characteristics 6.5.3.4 Time-Domain Analysis 6.6 Conclusions References Chapter 7 Circularly Polarized Printed Antennas 7.1 Introduction 7.2 Circularly Polarized Stacked Antennas 7.2.1 A Triple-CP Band Reconfigurable Stacked Antenna 7.2.2 Quad-Band CP Stacked Antennas 7.2.3 Triple-Band Reconfigurable Antenna Design 7.2.4 Quad-Band Antenna Design 7.3 Properties of Circularly Polarized Antennas 7.3.1 Single-Band Circularly Polarized Antennas 7.3.2 Reconfigurable Circularly Polarized Microstrip Antennas 7.3.3 Impedance Bandwidth Improvement of Triple-Band CP Antennas 7.3.4 Parametric Study of Quad-Band CP Antennas 7.3.5 Simulated and Measured Results 7.3.6 Operating Mechanism 7.4 Conclusion References Chapter 8 Special Techniques of Printed Antenna 8.1 Introduction 8.2 C-Shaped Recongfiurable Antennas 8.2.1 C-Shaped Antenna with Switchable Wideband Frequency Notch 8.2.2 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network 8.2.3 Design of C Shape Antenna with Switchable Wideband Frequency Notch 8.2.4 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network 8.2.5 Characteristics of the C-Shaped Antenna with a Switchable Wideband Frequency Notch 8.2.6 Other Radiation Characteristics 8.2.7 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network 8.2.8 Radiation Mechanism 8.2.9 Parametric Study 8.3 Magnetoelectric Dipole Antenna 8.3.1 Antenna Design 8.3.2 Parametric Studies 8.3.3 Characteristics of the Magnetoelectric Dipole Antenna 8.4 Conclusion References Chapter 9 Reconfigurable Printed Antennas 9.1 Introduction 9.2 Different Approaches for Attaining Reconfigurability 9.2.1 Electrical Method-Based Reconfigurable Antennas 9.2.1.1 RF-MEMS-Based Reconfigurable Antennas 9.2.1.2 PIN Diode-Based Reconfigurable Antennas 9.2.1.3 Varactor Diode-Based Reconfigurable Antennas 9.2.2 Optical Methods/Photoconductive Switches 9.2.3 Physically/Mechanically Reconfigurable Printed Antennas 9.2.4 Material-Based Reconfigurable Antennas 9.3 Applications 9.3.1 Frequency- Reconfigurable Antennas for Cognitive Radio System 9.3.2 Pattern- Reconfigurable Antennas for the MIMO Systems 9.3.3 Reconfigurable Antennas for Satellite Systems 9.4 Multi-Reconfigurable Antennas: The Latest Trend 9.5 Conclusion References Chapter 10 Dielectric Resonator-Based Multiple-Input Multiple- Output (MIMO) Antennas 10.1 Introduction 10.2 Wireless Communication Systems 10.3 Need of Multiple Antennas 10.4 MIMO Wireless Communication 10.5 MIMO Techniques 10.6 MIMO Antenna Systems 10.7 Performance Metrics of MIMO Antennas 10.7.1 Correlation Coefficient 10.7.2 Diversity Gain 10.7.3 Mean Effective Gain 10.7.4 Total Active Reflection Coefficient 10.7.5 Channel Capacity Loss ( CCL) 10.8 Problem in MIMO Antenna Systems 10.9 Introduction to Dielectric Resonator Antennas ( DRAs) 10.9.1 Characteristics of Dielectric Resonator Antennas ( DRAs) 10.9.2 Applications of DRAs 10.9.3 Basic Shapes of DRAs 10.9.4 Cylindrical Dielectric Resonator Antennas 10.9.5 Feeding Mechanisms 10.10 MIMO Dielectric Resonator Antennas 10.11 MIMO DRA Examples 10.11.1 Generation of Orthogonal Mode 10.11.2 Excitation of Degenerated Modes 10.11.3 Introduction of the Defected Ground Plane 10.11.4 Use of Decoupling Structures 10.11.5 Meta-Surface/Frequency-Selective Surface/EBGbetween Two DRAs 10.11.6 Separation of Radiation Patterns 10.12 Conclusion References Chapter 11 Advances in Patch Antenna Design Using EBG Structures 11.1 Introduction 11.2 EBG Structures and Their Properties 11.3 EBG Structures in Patch Antenna Design 11.3.1 Bandwidth Improvement in Patch Antennas Using EBG Structures 11.3.2 Gain Improvement Using EBG Structures 11.3.3 Mutual Coupling Reduction Using EBG Structures 11.3.4 Band-Notch Operation in Patch Antennas Using EBG Structures 11.3.5 Dual-Band and Multi-Band Characteristics Using EBG Structures 11.3.6 A Low-Profile MPA Using EBG Structures 11.4 Real-Life Applications of EBG Patch Antennas 11.4.1 High-Precision GPS 11.4.2 Wearable Electronics 11.4.3 Radio Frequency Identification (RFID) Systems 11.4.4 Radar Systems 11.5 Conclusion References Chapter 12 Design of Frequency Selective Surface (FSS) Printed Antennas 12.1 Introduction 12.2 Types of FSS 12.2.1 On the Basis of FSS Elements 12.2.2 On the Basis of Structure 12.2.2.1 Single-Layer FSS 12.2.2.2 Multilayer FSS 12.2.2.3 3-Dimensional FSS 12.2.3 On the Basis of Application 12.2.3.1 Active FSS 12.2.3.2 Textile FSS 12.2.3.3 Meta-Skin FSS 12.2.3.4 Wearable FSS 12.2.3.5 Absorber FSS 12.3 Principal of Operation 12.3.1 FSS Operational Theory 12.3.2 Periodic Structure (FSS) 12.4 Equivalent Circuit Model 12.4.1 Grating Strip 12.4.2 Square Loop 12.4.3 Jerusalem Cross 12.5 Applications of FSS 12.5.1 Enhancement of the Gain and Bandwidth of the Antenna Systems 12.5.2 Isolation in MIMO Antennas 12.5.3 Spatial Filtering 12.5.4 FSS for Reconfiguration of the Antennas 12.5.5 Electromagnetic Shielding 12.5.6 FSS Radomes for Antenna Protection 12.6 Conclusion Reference Index