ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Printed Antennas: Theory and Design

دانلود کتاب آنتن های چاپی: تئوری و طراحی

Printed Antennas: Theory and Design

مشخصات کتاب

Printed Antennas: Theory and Design

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2020024665, 9780367420451 
ناشر: Taylor & Francis 
سال نشر: 2020 
تعداد صفحات: 463 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 38 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Printed Antennas: Theory and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آنتن های چاپی: تئوری و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1 Basic Theory and Design of Printed Antennas
	1.1 Evolution and Upcoming Growth of Printed Antennas
	1.2 Features of Printed Antennas
		1.2.1 Feeding Techniques
			1.2.1.1 Coaxial Feeding
			1.2.1.2 Microstrip Feeding
			1.2.1.3 Proximity-Coupled Feeding
			1.2.1.4 Aperture-Coupled Feeding
		1.2.2 Performance Factors of Printed Antennas
			1.2.2.1 Radiation Pattern
			1.2.2.2 Directivity
			1.2.2.3 Antenna Gain
			1.2.2.4 Bandwidth
			1.2.2.5 Polarization
			1.2.2.6 Axial Ratio
	1.3 Characteristics of Printed Antennas
		1.3.1 Different Shapes of Printed Antennas
		1.3.2 General Characteristics of Basic Patches
			1.3.2.1 The Rectangular Patch
			1.3.2.2 The Circular Patch
			1.3.2.3 The Triangular Patch
			1.3.2.4 Annular Ring Patch
	1.4 Field of Applications for Printed Antennas
		1.4.1 Advantages and Disadvantages of Printed Antennas
	1.5 Techniques Developed for Low-Profile Printed Antennas
		1.5.1 Features of Printed Antenna Technology
		1.5.2 Basic Issues and Design Limitations
	1.6 Analysis Methods for Some Common Patches
		1.6.1 Analysis of Rectangular Patch Antenna by Transmission Line Model
		1.6.2 Analysis of Circular Patch Antenna by Cavity Model
	1.7 Special Measurement Techniques for Printed Antennas
		1.7.1 Substrate Properties
		1.7.2 Connector Characterization
		1.7.3 Measurements of Printed Lines and Networks
		1.7.4 Near-Field Probing
		1.7.5 Efficiency Measurement
	1.8 Summary Remarks
	References
Chapter 2 Latest Trends in the Field of Printed Antennas
	2.1 Introduction
	2.2 Latest Research Areas in the Field of Printed Antennas
		2.2.1 High-Gain Printed Antennas
		2.2.2 Super-Wideband Printed Antennas
		2.2.3 Printed Antennas with Circular Polarization (CP) Features
		2.2.4 ECC Reduction in MIMO Printed Antenna
		2.2.5 Printed Antenna with Low RCS Value
		2.2.6 Printed Antenna Design for 5G Applications
	2.3 Conclusion
	References
Chapter 3 Radiation Pattern Agility of Printed Antennas
	3.1 Introduction
	3.2 Types of Reconfigurable Antennas
	3.3 Microwave RF Switches
		3.3.1 PIN Diode Switches
		3.3.2 Varactor Diode
		3.3.3 Microelectromechanical Systems
	3.4 PIN Diode-Based Reconfigurable Patch Antenna for Pattern Agility
	3.5 Conclusion
	References
Chapter 4 Band Hopping in Printed Antennas
	4.1 Introduction
	4.2 Theory of MOS Loaded CMSA with an Airgap
		4.2.1 Metal Oxide Semiconductor
		4.2.2 Double MOS Loaded Circular Microstrip Antenna with an Airgap
		4.2.3 Specifications of Double MOS Loaded CMSA with an Airgap
		4.2.4 Radiation Pattern of CMSA
		4.2.5 Properties of Double MOS Loaded CMSA with an Airgap
	4.3 BST Varactor Diode Loaded Stacked CMSA
		4.3.1 Analysis of Upper Patch
		4.3.2 Analysis of Lower Patch
		4.3.3 Staked Circular Patch
		4.3.4 BST Varactor Diode Loaded Stacked Microstrip Patch
		4.3.5 Radiation Pattern of Stacked CMSA
		4.3.6 Specifications of BST Varactor Diode Loaded Stacked CMSA
		4.3.7 Properties of BST Varactor Diode Loaded Stacked CMSA
	4.4 Conclusion
	References
Chapter 5 Pattern and Polarization Diversity in Antennas
	5.1 Introduction
		5.1.1 Pattern Diversity
		5.1.2 Effect of Pattern Diversity on Diversity Gain (DG) and Cross-Envelope Correlation Coefficient (ECC)
	5.2 Polarization Diversity
		5.2.1 Diversity Gain of Polarization Diversity system
		5.2.2 If Two Orthogonal Components are Transmitted
		5.2.3 If a Single Linearly Polarized Component is Transmitted
		5.2.4 If a Circularly Polarized Antenna Transmits a Right-Hand Circular Polarization (RHCP) Component
		5.2.5 If the Radiated Signal is Obliquely Polarized
	5.3 Massive MIMO Antennas
	5.4 Conclusion
	References
Chapter 6 Compact Printed Antenna Designs: Need for UWB Communications
	6.1 Introduction
	6.2 An Asymmetric U-shaped Printed Monopole Antenna Embedded with a T-shaped Strip
		6.2.1 Antenna Configuration and Its Specifications
		6.2.2 Parametric Study of the Antenna
			6.2.2.1 Effect of the Radiating Patch
			6.2.2.2 Effect of the Gap between the Ground Plane and Radiating Patch
			6.2.2.3 Effect of the Ground Plane Structure
		6.2.3 Comparative Results of the Antenna
	6.3 Small Size Scarecrow-Shaped CPW- and Microstrip Line-Fed UWB Antennas
		6.3.1 CPW-Fed Scarecrow-Shaped Patch Antenna
			6.3.1.1 Antenna Design
			6.3.1.2 Parametric Study
			6.3.1.3 Radiation Pattern of the CPW-Fed Antenna
		6.3.2 Microstrip Line-Fed UWB Antenna
			6.3.2.1 Antenna Design
			6.3.2.2 Antenna Results
			6.3.2.3 Radiation Pattern of the Microstrip Line-Fed Antenna
	6.4 A Half-Cut Design of a Low-Profile UWB Planar Antenna
		6.4.1 Development of Antenna and Its Optimization
		6.4.2 Return Loss of the Antenna
		6.4.3 PMW Technique and Current Distribution Analysis
		6.4.4 Antenna Gain and Group Delay
		6.4.5 Radiation Characteristics
	6.5 A Modified Microstrip Line-Fed Compact UWB Printed Antenna
		6.5.1 Antenna Design
		6.5.2 Parametric Study of the Designed Antenna
		6.5.3 Antenna Fabrication and Results
			6.5.3.1 VSWR Measurement
			6.5.3.2 Realized Gain and Radiation Efficiency
			6.5.3.3 Radiation Characteristics
			6.5.3.4 Time-Domain Analysis
	6.6 Conclusions
	References
Chapter 7 Circularly Polarized Printed Antennas
	7.1 Introduction
	7.2 Circularly Polarized Stacked Antennas
		7.2.1 A Triple-CP Band Reconfigurable Stacked Antenna
		7.2.2 Quad-Band CP Stacked Antennas
		7.2.3 Triple-Band Reconfigurable Antenna Design
		7.2.4 Quad-Band Antenna Design
	7.3 Properties of Circularly Polarized Antennas
		7.3.1 Single-Band Circularly Polarized Antennas
		7.3.2 Reconfigurable Circularly Polarized Microstrip Antennas
		7.3.3 Impedance Bandwidth Improvement of Triple-Band CP Antennas
		7.3.4 Parametric Study of Quad-Band CP Antennas
		7.3.5 Simulated and Measured Results
		7.3.6 Operating Mechanism
	7.4 Conclusion
	References
Chapter 8 Special Techniques of Printed Antenna
	8.1 Introduction
	8.2 C-Shaped Recongfiurable Antennas
		8.2.1 C-Shaped Antenna with Switchable Wideband Frequency Notch
		8.2.2 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
		8.2.3 Design of C Shape Antenna with Switchable Wideband Frequency Notch
		8.2.4 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
		8.2.5 Characteristics of the C-Shaped Antenna with a Switchable Wideband Frequency Notch
		8.2.6 Other Radiation Characteristics
		8.2.7 Multiband Multipolarized Reconfigurable Circularly Polarized Monopole Antenna with a Simple Biasing Network
		8.2.8 Radiation Mechanism
		8.2.9 Parametric Study
	8.3 Magnetoelectric Dipole Antenna
		8.3.1 Antenna Design
		8.3.2 Parametric Studies
		8.3.3 Characteristics of the Magnetoelectric Dipole Antenna
	8.4 Conclusion
	References
Chapter 9 Reconfigurable Printed Antennas
	9.1 Introduction
	9.2 Different Approaches for Attaining Reconfigurability
		9.2.1 Electrical Method-Based Reconfigurable Antennas
			9.2.1.1 RF-MEMS-Based Reconfigurable Antennas
			9.2.1.2 PIN Diode-Based Reconfigurable Antennas
			9.2.1.3 Varactor Diode-Based Reconfigurable Antennas
		9.2.2 Optical Methods/Photoconductive Switches
		9.2.3 Physically/Mechanically Reconfigurable Printed Antennas
		9.2.4 Material-Based Reconfigurable Antennas
	9.3 Applications
		9.3.1 Frequency- Reconfigurable Antennas for Cognitive Radio System
		9.3.2 Pattern- Reconfigurable Antennas for the MIMO Systems
		9.3.3 Reconfigurable Antennas for Satellite Systems
	9.4 Multi-Reconfigurable Antennas: The Latest Trend
	9.5 Conclusion
	References
Chapter 10 Dielectric Resonator-Based Multiple-Input Multiple- Output (MIMO) Antennas
	10.1 Introduction
	10.2 Wireless Communication Systems
	10.3 Need of Multiple Antennas
	10.4 MIMO Wireless Communication
	10.5 MIMO Techniques
	10.6 MIMO Antenna Systems
	10.7 Performance Metrics of MIMO Antennas
		10.7.1 Correlation Coefficient
		10.7.2 Diversity Gain
		10.7.3 Mean Effective Gain
		10.7.4 Total Active Reflection Coefficient
		10.7.5 Channel Capacity Loss ( CCL)
	10.8 Problem in MIMO Antenna Systems
	10.9 Introduction to Dielectric Resonator Antennas ( DRAs)
		10.9.1 Characteristics of Dielectric Resonator Antennas ( DRAs)
		10.9.2 Applications of DRAs
		10.9.3 Basic Shapes of DRAs
		10.9.4 Cylindrical Dielectric Resonator Antennas
		10.9.5 Feeding Mechanisms
	10.10 MIMO Dielectric Resonator Antennas
	10.11 MIMO DRA Examples
		10.11.1 Generation of Orthogonal Mode
		10.11.2 Excitation of Degenerated Modes
		10.11.3 Introduction of the Defected Ground Plane
		10.11.4 Use of Decoupling Structures
		10.11.5 Meta-Surface/Frequency-Selective Surface/EBGbetween Two DRAs
		10.11.6 Separation of Radiation Patterns
	10.12 Conclusion
	References
Chapter 11 Advances in Patch Antenna Design Using EBG Structures
	11.1 Introduction
	11.2 EBG Structures and Their Properties
	11.3 EBG Structures in Patch Antenna Design
		11.3.1 Bandwidth Improvement in Patch Antennas Using EBG Structures
		11.3.2 Gain Improvement Using EBG Structures
		11.3.3 Mutual Coupling Reduction Using EBG Structures
		11.3.4 Band-Notch Operation in Patch Antennas Using EBG Structures
		11.3.5 Dual-Band and Multi-Band Characteristics Using EBG Structures
		11.3.6 A Low-Profile MPA Using EBG Structures
	11.4 Real-Life Applications of EBG Patch Antennas
		11.4.1 High-Precision GPS
		11.4.2 Wearable Electronics
		11.4.3 Radio Frequency Identification (RFID) Systems
		11.4.4 Radar Systems
	11.5 Conclusion
	References
Chapter 12 Design of Frequency Selective Surface (FSS) Printed Antennas
	12.1 Introduction
	12.2 Types of FSS
		12.2.1 On the Basis of FSS Elements
		12.2.2 On the Basis of Structure
			12.2.2.1 Single-Layer FSS
			12.2.2.2 Multilayer FSS
			12.2.2.3 3-Dimensional FSS
		12.2.3 On the Basis of Application
			12.2.3.1 Active FSS
			12.2.3.2 Textile FSS
			12.2.3.3 Meta-Skin FSS
			12.2.3.4 Wearable FSS
			12.2.3.5 Absorber FSS
	12.3 Principal of Operation
		12.3.1 FSS Operational Theory
		12.3.2 Periodic Structure (FSS)
	12.4 Equivalent Circuit Model
		12.4.1 Grating Strip
		12.4.2 Square Loop
		12.4.3 Jerusalem Cross
	12.5 Applications of FSS
		12.5.1 Enhancement of the Gain and Bandwidth of the Antenna Systems
		12.5.2 Isolation in MIMO Antennas
		12.5.3 Spatial Filtering
		12.5.4 FSS for Reconfiguration of the Antennas
		12.5.5 Electromagnetic Shielding
		12.5.6 FSS Radomes for Antenna Protection
	12.6 Conclusion
	Reference
Index




نظرات کاربران