دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ریاضی ویرایش: First Edition نویسندگان: Robert D. Richtmyer سری: ISBN (شابک) : 038710772X, 9780387107721 ناشر: Springer سال نشر: 1981 تعداد صفحات: 162 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Principles of advanced mathematical physics, Volume 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول فیزیک پیشرفته ریاضی جلد 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to Volume II Elementary Group Theory 18.l The group axioms; examples 18.2 Elementary consequences of the axioms; further definitions 3 18.3 Isomorphism 5 18.4 Permutation groups 6 18.5 Homomorphisms; normal subgroups 8 18.6 eosets 10 18.7 Factor groups 10 18.8 The Law of Homomorphism 1J 18.9 The structure of cyclic groups II 18.10 Translations, inner automorphisms 12 18.l1 The subgroups of /1\'4 13 18.l2 Generators and relations; free groups IS 18.13 Multiply periodic functions and crystals 16 18.l4 The space and point groups 17 18.15 Direct and semidirect products of groups; symmorphic space groups 20 Continuous Groups 19.1 Orthogonal and rotation groups 25 19.2 The rotation group SO(3); Euler\'s theorem 27 19.3 Unitary groups 28 19.4 The Lorentz groups 29 19.5 Group manifolds 34 19.6 Intrinsic coordinates in the manifold of the rotation group 35 19.7 The homomorphism of SU(2) onto SO(3) 37 19.8 The homomorphism of SL(2, q onto the proper Lorentz group ~p 38 19.9 Simplicity of the rotation and Lorentz groups 38 20 Group Representations I: Rotations and Spherical Harmonics 40 20.1 Finite-dimensional representations of a group 41 20.2 Vector and tensor transformation laws 41 20.3 Other group representations in physics 44 20.4 Infinite-dimensional representations 45 20.5 A simple case: SO(2) 46 20.6 Representations of matrix groups on Xoo 47 20.7 Homogeneous spaces 48 20.8 Regular representations 49 20.9 Representations of the rotation group SO(3) 50 20.10 Tesseral harmonics; Legendre functions 53 20.11 Associated Legendre functions 55 20.12 Matrices of the irreducible representations of SO(3); the Euler angles 57 20.13 The addition theorem for tesseral harmonics 59 20.14 Completeness of the tesseral harmonics 60 Group Representations II: General; Rigid Motions; Bessel Functions 21.1 Equivalence; unitary representations 62 21.2 The reduction of representations 63 21.3 Schur\'s Lemma and its corollaries 65 21.4 Compact and noncompact groups 66 21.5 Invariant integration; Haar measure 67 21.6 Complete system ofrepresentations of a compact group 71 21.7 Homogeneous spaces as configuration spaces in physics 72 21.8 M 2 and related groups 73 21.9 Representations of M 2 73 21.10 Some irreducible representations 74 21.11 Bessel functions 75 21.12 Matrices of the representations 76 21.13 Characters 77 Group Representations and Quantum Mechanics 22.1 Representations in quantum mechanics 80 22.2 Rotations of the axes 81 22.3 Ray representations 82 22.4 A finite-dimensional case 83 22.5 Local representations 83 22.6 Origin of the two-valued representations 84 22.7 Representations of SU(2) and SL(2, IC) 85 22.8 Irreducible representations of SU(2) 87 22.9 The characters of SU(2) 89 22.10 Functions of z and z 89 22.11 The finite-dimensional representations of SL(2, IC) 90 22.12 The irreducible invariant subspaces of xro for SL(2, IC) 92 22.13 Spinors 93 Elementary Theory of Manifolds 23.1 Examples of manifolds; method of identification 96 23.2 Coordinate systems or charts; compatibility; smoothness 98 23.3 Induced topology 101 23.4 Definition of manifold; Hausdorff separation axiom 101 23.5 Curves and functions in a manifold 103 23.6 Connectedness; components of a manifold 104 23.7 Global topology; homotopic curves; fundamental group 105 23.8 Mechanical linkages: Cartesian products 111 Covering Manifolds 24.1 Definition and examples 114 24.2 Principles of lifting 117 24.3 Universal covering manifold 119 24.4 Comments on the construction of mathematical models 121 24.5 Construction of the universal covering 123 24.6 Manifolds covered by a given manifold 125 Lie Groups 25.1 Definitions and statement of objectives 130 25.2 Theexpansions ofm(\" .) andI(\" .) 132 25.3 The Lie algebra of a Lie group 133 25.4 Abstract Lie algebras 135 25.5 The Lie algebras of linear groups 135 25.6 The exponential mapping; logarithmic coordinates 136 96 114 129 25.7 An auxiliary lemma on inner automorphisms; the mappings Ad p 139 25.8 Auxiliary lemmas on formal derivatives 141 25.9 An auxiliary lemma on the differentiation of exponentials 143 25.10 The Campbell-Baker-Hausdorf (CBH) formula 144 25.11 Translation of charts; compatibility; G as an analytic manifold 146 25.12 Lie algebra homomorphisms 149 25.13 Lie group homomorphisms 151 25.14 Law of homomorphism for Lie groups 155 25.15 Direct and semidirect sums of Lie algebras 160 25.16 Classification of the simple complex Lie algebras 162 25.17 Models of the simple complex Lie algebras 167 25.18 Note on Lie groups and Lie algebras in physics 170 Appendix to Chapter 25-Two nonlinear Lie groups 171 Metric and Geodesics on a Manifold 26.1 Scalar and vector fields on a manifold 175 26.2 Tensor fields 180 26.3 Metric in Euclidean space 182 26.4 Riemannian and pseudo-Riemannian manifolds 183 26.5 Raising and lowering of indices 185 26.6 Geodesics in a Riemannian manifold 186 26.7 Geodesics in a pseudo-Riamannian manifold 9Ji 190 26.8 Geodesics; the initial-value problem; the Lipschitz condition 190 26.9 The integral equation; Picard iterations 192 26.10 Geodesics; the two-point problem 193 26.11 Continuation of geodesics 194 26.12 Affinely connected manifolds 195 26.13 Riemannian and pseudo-Riemannian covering manifolds 197 Riemannian, Pseudo-Riemannian, and Affinely Connected Manifolds 27.1 Topology and metric 199 27.2 Geodesic or Riemannian coordinates 199 27.3 Normal coordinates in Riemannian and pseudo-Riemannian manifolds 202 27.4 Geometric concepts; principle of equivalence 203 27.5 Covariant differentiation 206 27.6 Absolute differentiation along a curve 208 27.7 Parallel transport 209 27.8 Orientability 210 27.9 The Riemann tensor, general; Laplacian and d\'Alembertian 211 27.10 The Riemann tensor in a Riemannian or pseudo-Riemannian manifold 214 27.11 The Riemann tensor and the intrinsic curvature of a manifold 216 27.12 Flatness and the vanishing of the Riemann tensor 218 27.13 Eisenhart\'s analysis of the Stackel systems 221 The Extension of Einstein Manifolds 28.1 Special relativity 223 28.2 The Einstein gravitational field equations 224 28.3 The Schwarzschild charts 227 28.4 The Finkelstein extensions of the Schwarzschild charts 231 28.5 The Kruskal extension 233 28.6 Maximal extensions; geodesic completeness 235 28.7 Other extensions of the Schwarzschild manifolds 235 28.8 The Kerr manifolds 237 28.9 The Cauchy problem 240 28.10 Concluding remarks 243 Bifurcations in Hydrodynamic Stability Problems 29.1 The classical problems of hydrodynamic stability 244 29.2 Examples of bifurcations in hydrodynamics 245 29.3 The Navier-Stokes equations 247 29.4 Hilbert space formulation 248 29.5 The initial-value problem; the semiflow in,5 248 29.6 The normal modes 249 29.7 Reduction to a finite-dimensional dynamical system 250 29.8 Bifurcation to a new steady state 254 29.9 Bifurcation to a periodic orbit 255 29.10 Bifurcation from a periodic orbit to an invariant torus 257 29.11 Subharmonic bifurcation 261 Appendix to Chapter 29-Computational details for the invariant torus 261 Invariant Manifolds in the Taylor Problem 30.1 Survey of the Taylor problem to 1968 263 30.2 Calculation of invariant manifolds 265 30.3 Cylindrical coordinates 268 30.4 The Hilbert space 270 30.5 Separation of variables in cylindrical coordinates 27l 30.6 Results to date for the Taylor problem 272 Appendix to Chapter 30-The matrices in Eagles\' formulation 274 263 31 The Early Onset ofTurbulence 276 31.1 The Landau~Hopfmodel 276 31.2 The Hopf example 278 31.3 The Ruelle~ Takens model 279 31.4 The w-limit set of a motion 280 31.5 Attractors 282 31.6 The power spectrum for motions in [Rn 283 31.7 Almost periodic and aperiodic motions 284 31.8 Lyapounov stability 285 31.9 The Lorenz system; the bifurcations 286 31.10 The Lorenz attractor; general description 288 31.11 The Lorenz attractor; aperiodic motions 290 31.12 Statistics of the mapping! and 9 293 31.13 The Lorenz attractor; detailed structure I 294 31.14 The symbols [i,j] of Williams 297 31.15 Prehistories 299 31.16 The Lorenz attractor; detailed structure II 300 31.17 Existence of I-cells in F 301 31.18 Bifurcation to a strange attractor 302 31.19 The Feigenbaum model 303 Appendix to Chapter 3I (Parts A~H)-Generic properties of systems: 304 31.A Spaces of systems 304 31.B Absence of Lebesgue measure in a Hilbert space 304 31.C Generic properties of systems 305 31.D Strongly generic; physical interpretation 305 31.E Peixoto\'s theorem 306 Other examples of generic and nongeneric properties 306 Lack of correspondence between genericity and Lebesgue measure 308 Probability and physics 308 References 313 Index 317