دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Zhengchang Shen
سری:
ISBN (شابک) : 9811603316, 9789811603310
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 135 مگابایت
در صورت تبدیل فایل کتاب Principles and Technologies of Flotation Machines (Springer Tracts in Mechanical Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و فناوری های ماشین های شناورسازی (تراکت های اسپرینگر در مهندسی مکانیک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصول و فنآوریهای دستگاه فلوتاسیون که عمدتاً در فرآوری مواد معدنی استفاده میشود را با جزئیات برجسته میکند. فلوتاسیون کف یکی از مهم ترین تکنیک های فرآوری مواد معدنی است. بیش از 90 درصد از مواد معدنی غیرآهنی و 50 درصد از کانی های آهنی در جهان با استفاده از شناورسازی درمان می شوند: یک تکنیک پیچیده شامل روش های شیمی، فیزیک و مکانیک سیالات چند مقیاسی. این کتاب خوانندگان را با سلولهای شناور هوا و القا شده با هوا آشنا میکند و ساختارهای مکانیکی مختلف و اصول کار مرتبط را مورد بحث قرار میدهد. تعدادی از مثالها از تمرینات مهندسی صنایع نیز در سراسر کتاب مورد بحث قرار گرفتهاند و به خوانندگان کمک میکنند تا فناوری و تجهیزات مربوطه را بهتر درک کنند. این کتاب برای محققان، متخصصان و دانشجویان تحصیلات تکمیلی در رشته های مهندسی معدن و فرآوری مواد معدنی در نظر گرفته شده است.
This book highlights the principles and technologies of flotation machine mainly used in mineral processing in detail. Froth flotation is one of the most important mineral processing techniques. Over 90% of the nonferrous minerals and 50% of the ferrous minerals in the world are treated using flotation: a complicated technique including procedures from chemistry, physics and multi-scale fluid mechanics. The book introduces readers to air-forced and air-induced flotation cells and discusses the various mechanical structures and working principles involved. A number of examples from industrial engineering practice are also discussed throughout the book, helping readers to better understand the technology and relevant equipment. The book is intended for researchers, professionals and graduate students in the fields of mining and mineral processing engineering.
Preface Contents 1 Introduction 1.1 Brief Introduction of the Evolution History of Flotation Machine 1.1.1 Flotation in Ancient Times 1.1.2 Flotation in Ancient Times 1.2 Development Trend of Flotation Equipment 1.2.1 Classification of Flotation Machines References 2 Basic Study of Flotation Dynamics 2.1 Collision Between Mineral Particles and Bubbles 2.1.1 Collision Process Mechanism of Coarse Minerals 2.1.2 Collision Process Mechanism of Fine Minerals 2.2 Adhesion Between Mineral Particles and Bubbles 2.2.1 Adhesion of Coarse Minerals 2.2.2 Adhesion of Fine Minerals 2.3 Detachment of Mineral Particles and Bubbles 2.4 Influence of Size on Flotation 2.4.1 Influence of Coarse Particles on Flotation 2.4.2 Influence of Fine Particles on Flotation 2.5 Dynamic Zoning of Flotation Machine 2.5.1 Agitating and Mixing Zone 2.5.2 Transport Zone 2.5.3 Separation Zone 2.5.4 Froth Zone References 3 Dynamic Characteristics and Evaluation of Flotation Machines 3.1 Characteristic Parameters and Evaluation of Flotation Machines 3.1.1 Aeration (Suction) Rate 3.1.2 Dispersion Degree of Air 3.1.3 Diameter and Distribution of Bubbles 3.1.4 Bubble Surface Area Flux 3.1.5 Gas Holdup 3.1.6 Bubble-Loading Rate 3.1.7 Pulp Resident Time Distribution 3.1.8 Short Circuit 3.1.9 Volume Utilization Coefficient 3.1.10 Pulp Suspension 3.1.11 Critical Speed of Impeller 3.1.12 Spindle Power Consumption 3.2 Performance Evaluation of Flotation Machines References 4 Research on Fluid Dynamics Test of Flotation Machines 4.1 Flow State Test of Flotation Machines 4.1.1 LDV Testing Technology 4.1.2 PIV Testing Technology 4.2 Pulp Flow Test Technology 4.2.1 Residence Time Distribution Test 4.2.2 Circulation Volume and Flow Velocity Test 4.2.3 Suspension Capacity Test 4.3 Bubbles and Particles Testing Technology 4.4 PEPT Technology 4.5 Spindle Force Test References 5 CFD Simulation Research on Fluid Dynamics of Flotation Machines 5.1 Summary of CFD Simulation Research of Flotation Machines 5.1.1 Significance of CFD Simulation of Flotation Equipment 5.1.2 Research Objective of CFD Simulation of Flotation Machines 5.1.3 Problems Existing in CFD Simulation of Flotation Machines 5.1.4 Prospect on CFD Simulation of Flotation Machines 5.2 CFD Simulation Research of Flotation Machines 5.2.1 CFD Mathematical Model of Flotation Machines 5.2.2 CFD Simulation Research of Flotation Machines Under the Single-Phase Condition 5.2.3 Flow Field of the Flotation Machine Under the Two-Phase System 5.2.4 Flow Field of the Flotation Machine Under the Two-Phase System 5.2.5 Optimization of Flotation Machines Based on CFD Simulation References 6 Flotation Machine Upsizing Method and Technology 6.1 Flotation Machine Upsizing Process 6.2 Flotation Machine Upsizing Technology 6.2.1 TankCell Flotation Machine 6.2.2 Wemco Flotation Machine 6.3 BGRIMM Flotation Machine Upsizing Technology 6.3.1 Difficulties of Flotation Machine Upsizing Technology 6.3.2 BGRIMM Flotation Machine Upsizing Technology 6.3.3 Key Structure Design of BGRIMM Large Flotation Machine 6.3.4 Rapid BGRIMM Flotation Machine Upsizing Driven by CFD Technology References 7 BGRIMM Mechanical Agitation Flotation Machine 7.1 SF, BF and GF Mechanical Agitation Flotation Machines 7.1.1 SF Flotation Machine 7.1.2 BF Flotation Machine 7.1.3 GF Flotation Machine 7.2 JJF Mechanical Agitation Flotation Machine 7.2.1 Working Principle and Key Structures 7.2.2 Analysis of Dynamic Performance of the JJF Flotation Machine References 8 BGRIMM Pneumatic Mechanical Agitation Flotation Machine 8.1 KYF Pneumatic Mechanical Agitation Flotation Machine 8.1.1 Working Principle and Key Structures of KYF Flotation Machine 8.1.2 Fluid Dynamics Research in KYF Flotation Machines 8.1.3 Performance and Application of the KYF Flotation Machines 8.2 XCF Automatic Suction Pneumatic Mechanical Agitation Flotation Machine 8.2.1 Working Principle and Key Structures of XCF Flotation Machine 8.2.2 Fluid Dynamics Research in XCF Flotation Machines 8.2.3 Performance and Application of the XCF Flotation Machines References 9 BGRIMM Wide-Size-Fraction Flotation Machine 9.1 Technology of Wide-Size-Fraction Flotation Machine 9.1.1 Design Principle of Wide-Size-Fraction Flotation Machine 9.1.2 Working Principle and Structure of Wide-Size-Fraction Flotation Machine 9.2 CLF Air-Forced Wide-Size-Fraction Flotation Machine 9.2.1 Working Principle and Key Structures 9.2.2 Performance of CLF-8 Flotation Machine 9.2.3 Performance of CLF-40 Flotation Machine 9.3 CGF Automatic Suction Wide-Size-Fraction Flotation Machine 9.3.1 Key Structure and Working Principle 9.3.2 Dynamic Performance of CGF Flotation Machine References 10 Process Control System of Flotation Machines 10.1 Development and Current Situation of Flotation Machine Control System 10.1.1 Early Development of Flotation Machine Process Control Technology at Home and Abroad 10.1.2 Process Control Situation of Flotation Machines at Home and Abroad 10.2 Pulp Level Control of Flotation Machines 10.2.1 Level Detection Device 10.2.2 Actuators 10.2.3 Pulp Level Control Strategies 10.2.4 Industrial Application of the Level Control System of BFLC Flotation Machine 10.3 Aeration Rate Control of Flotation Machines 10.3.1 Aeration Rate Detection Device and Control Device 10.3.2 Automatic Control Strategy for Aeration Rate 10.3.3 Industrial Application of the Aeration Rate Control System of BFLC Flotation Machine 10.4 Froth Image Analysis of Flotation Machines 10.4.1 Flotation Froth Image Equipment and Implementation Method 10.4.2 Static and Dynamic Characteristic Detection Technology of Flotation Froth 10.4.3 Application of Froth Image Analysis in the Flotation Process Control System 10.5 Process Control Problems and Development Trend of Flotation Machines 10.5.1 Process Control Problems of Flotation Machines 10.5.2 Development Trend References 11 Model Selection and Design of Flotation Machines 11.1 Technical Characteristics of Flotation Machines 11.2 Preliminary Determination of Flotation Machine Type and Specification 11.3 Selection for the Specification of Flotation Machines 11.3.1 Calculation of Flotation Pulp Volume 11.3.2 Determination of Flotation Time of Operations 11.3.3 Calculation and Determination of Tank Quantity of Flotation Machines 11.3.4 Calculation Example 11.4 Configuration of Flotation Machines 11.4.1 Horizontal Configuration 11.4.2 Stepwise Configuration 11.4.3 Selection of Two Configuration Methods 11.4.4 Selection Cases of Configuration Methods 11.5 Selection of Supporting Equipment 11.5.1 Flotation Process Control System 11.5.2 Supporting Equipment for Process 11.6 Fuzzy Comprehensive Evaluation of Flotation Machine Section 11.6.1 Process of Fuzzy Comprehensive Evaluation 11.6.2 Factor Sets and Factors 11.6.3 Determination of Weight Coefficient 11.6.4 Fuzzy Conclusion Set 11.7 Model Selection of Flotation Machines of CBR 11.7.1 Design and Selection of CBR 11.7.2 Example Expression and Example Retrieval 11.8 Model Selection of Flotation Machines Based on JK Technology 11.8.1 Flotation Process Simulation Software of JKSimFloat 11.8.2 Flotation Process Simulation Software of HSC Sim 11.8.3 Flotation Process Simulation Software of USIM PAC References 12 Application Examples of Flotation Machines 12.1 Applications of Flotation Machines for Non-Ferrous Metal Ores 12.1.1 Application of Flotation Machines for Bauxite 12.1.2 Application of Flotation Machines for Copper Mine 12.1.3 Application of Flotation Machines for Lead–zinc Ore 12.1.4 Application of Flotation Machines for Nickel Ore 12.1.5 Application of Flotation Machines for Molybdenum Ore 12.2 Applications of Flotation Machines for Ferrous Metal Ores 12.2.1 Application of Flotation Machines in JISCO’s Concentrator 12.2.2 Application of Flotation Machines in the Concentrator of Daye Iron Mine 12.2.3 Application of Flotation Machines in Baotou Iron and Steel Company’s Concentrator 12.2.4 Application of Flotation Machines in Jianshan Iron Ore Mine of Taiyuan Iron & Steel (Group) Co., Ltd. 12.2.5 Application of Flotation Machines in Anshan Iron and Steel Group Corporation 12.2.6 Application of Flotation Machines in Shougang Peru S.A.A 12.3 Application of Flotation Machines in the Separation of Rare and Precious Metal Ores 12.3.1 Application of Flotation Machines for Gold Ore Separation 12.3.2 Application of Flotation Machines in Lithium Ore Separation 12.4 Applications of Flotation Machines for Non-Metal Ores 12.4.1 Application of Flotation Machines for Potassic Salt Ore 12.4.2 Application of Flotation Machines in Phosphorite Separation 12.4.3 Application of Flotation Machines in the 4.5 Million t/a Project of Kunyang Phosphate Mine 12.4.4 Application of Flotation Machines in Silica Sand Separation 12.4.5 Application of Flotation Machines in Fluorite Separation 12.4.6 Application of Flotation Machines in Graphite Separation 12.5 Application of Flotation Machines in Reconcentration of Tailings 12.5.1 Application of Flotation Machines in Tailings Concentrator of Dexing Copper Mine 12.5.2 Application of Flotation Machines at Sizhou Concentrator of Dexing Copper Mine 12.5.3 Application of Flotation Machines in Chengde Shuangluan Jianlong Mining Co., Ltd 12.6 Application of Flotation Machines in Copper Smelting Slag 12.6.1 Application of Flotation Machines at Guixi Smelter of Jiangxi Copper Corporation Limited 12.6.2 Application of Flotation Machines in PASAR References