دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Michael B. Hicks, Paul D. Ferguson سری: Separation Science and Technology, 14 ISBN (شابک) : 0323884873, 9780323884877 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 431 [434] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 Mb
در صورت تبدیل فایل کتاب Practical Application of Supercritical Fluid Chromatography for Pharmaceutical Research and Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربرد عملی کروماتوگرافی سیال فوق بحرانی برای تحقیق و توسعه دارویی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاربرد عملی کروماتوگرافی سیال فوق بحرانی برای تحقیق و توسعه دارویی یک مرجع ارزشمند برای بسیاری از چالشهای دشوار حل با استفاده از نظریه کروماتوگرافی مربوطه، مورد دست اول ارائه میکند. مطالعات و نمونه های ارائه شده از کارشناسان دانشگاهی و صنعتی. این متن همچنین اساتیدی را قادر میسازد که یک دوره ابزار تحلیلی را تدریس کنند تا یکی از پایدارترین و قویترین روشهای جداسازی موجود را به دانشجویان معرفی و آموزش دهند. در حالی که این متن کاربرد گسترده ای در بخش های صنعتی دارد، در درجه اول بر کاربرد در صنعت داروسازی تمرکز دارد. این کتاب به گونه ای طراحی شده است که به خوانندگان اجازه دهد تا قابلیت های HPLC/UHPLC فعلی را با SFC به عنوان ابزاری متعامد برای روش های خاص پروژه در صنعت داروسازی هماهنگ کنند. این نشان میدهد که SFC در طیف ابزارهای کروماتوگرافی مفید برای روشهای جداسازی روتین و چالش برانگیز قرار میگیرد.
کاربران باتجربه HPLC که علاقهمند به توسعه دانش در تکنیکهای جداسازی متعامد هستند، و همچنین تازه واردان به حوزه علوم جداسازی، این متن را بسیار مفید خواهند یافت. فصلها به جایی میپردازند که SFC ممکن است با نیازهای تحلیلی صنعت دارو مطابقت داشته باشد و به خوانندگان هشدار میدهد که در کجا این تکنیک مناسب نیست. خوانندگان درک درستی از نحوه و مکان استفاده از SFC و تطبیق بیشتر آنها در صنعت داروسازی به عنوان روشی سبز برای انجام فرصت ها و چالش های جداسازی به دست خواهند آورد. حوزههای صنعت داروسازی عبارتند از: کشف اولیه دارو، شیمی فرآیند، و توسعه و تولید در مراحل آخر.
Practical Application of Supercritical Fluid Chromatography for Pharmaceutical Research and Development provides a valuable “go-to reference for many difficult-to-solve challenges using pertinent chromatographic theory, first-hand case studies, and examples provided from academic and industry experts. This text also enables professors teaching an analytical instrumental course to introduce and instruct students about one of the most sustainable and powerful separation methods currently available. While the text has broad applicability across industrial sectors, it focuses primarily on application in the pharmaceutical industry. The book is designed to allow readers to align current HPLC/UHPLC capabilities with SFC as an orthogonal tool for project specific methods in the pharmaceutical industry. It highlights where SFC falls on the spectrum of useful chromatographic tools for routine and challenging separative methods.
Experienced HPLC users who are interested in developing knowledge in orthogonal separation techniques, as well as newcomers to the field of separation science, will find this text particularly useful. Chapters address where SFC may fit the analytical needs of the pharmaceutical industry and alert the readers as to where the technique will not fit. Readers will gain an understanding of how and where SFC may be applied and adapted more routinely across the pharmaceutical industry as a ‘green’ way of undertaking separation opportunities and challenges. Areas within the pharmaceutical industry include early drug discovery, process chemistry, and late stage development and manufacturing.
Front Cover Practical Application of Supercritical Fluid Chromatography For Pharmaceutical Research and Development Copyright Dedication Contents Contributors Preface Supercritical fluids Historical perspectives SFC in the pharmaceutical industry Scope and relevance for this text References Chapter 1: Evolution of packed column SFC as a greener analytical tool for pharmaceutical analysis Discovery of supercritical fluids and its relevance to analytical separation science The progression of analytical supercritical fluid chromatography Fundamentals of mobile phases Sustainable aspects of subcritical and supercritical chromatographic separation methods Analytical scale subcritical SFC Analytical enhanced-fluidity liquid chromatography Preparative and analytical scale instrument improvements Mobile phase pump Injectors and sample delivery Column ovens Detector interfaces Multidimensional SFC Preparative SFC Current utility and recent advancements Future directions References Chapter 2: Application space for SFC in pharmaceutical drug discovery and development Introduction Discussion Historical overview of SFC applications 1980–2000: SFC for the analysis of apolar substances and chiral drugs 2000–2010: SFC as an alternative to RPLC for achiral applications 2010–2014: Transition from SFC to UHPSFC 2015–present day: SFC for highly polar compounds Considerations on SFC as an analytical tool in drug discovery and development Mobile phase composition Impact of the stationary phase Choice of injection solvent Hyphenation to mass spectrometer detectors Quantitative performance of SFC Conclusions and perspectives References Chapter 3: Selection of SFC stationary and mobile phases Introduction Current stationary phase chemistries for SFC Preferred stationary phases in recent achiral pharmaceutical applications Preferred stationary phases in recent chiral pharmaceutical applications Tandem column combinations Flexible mobile phase composition Utility of cosolvents Additives Gradient elution Identifying an optimal mobile phase composition Considerations for transfer to preparative scale Other operating parameters: Temperature, pressure and flow rate Predicting retention and selectivity Summary References Chapter 4: Measurements of drugs and metabolites in biological matrices using SFC and SFE-SFC-MS Introduction to drug and metabolite analysis in biological matrices using SFC and SFE-SFC-MS A brief history of SFC-MS for the analysis of biological matrices SFC-MS and SFE-SFC-MS compared to LC–MS for pharmaceutical analysis On-line SFE-SFC-MS method development for biological matrices SFE-SFC-MS instrumentation overview Systematic method development and workflow for SFE-SFC-MS Optimize MS-based detection of target analytes Optimize SFC-based chromatographic separation Optimize SFE-based on-line extraction from blank sampling matrices Optimize SFE-SFC-MS method for application specific matrix considerations Drug metabolism and pharmacokinetics (DMPK) monitoring in discovery and development Introduction to drug metabolism and pharmacokinetic analysis SFC and SFE-SFC for DMPK in discovery and development Analytical SFC overview and applications SFE-SFC-MS applications Discovery and dereplication of natural products SFC overview and applications SFE-SFC overview and applications Conclusions References Chapter 5: Synthetic chemistry screening for robust analysis and purification from discovery through to development Introduction Screening strategies Achiral screening: Column selection Achiral screening: Mobile phase composition Achiral screening: Sample diluent Achiral screening: Instrumentation and methods Chiral screening: Overview Chiral screening: Instrumentation Chiral screening: Column selection Chiral screening methods Chiral screening: Isocratic method development Chiral screening: SFC and the GSK chiral screen workflow Practicality Analysis of highly polar compounds Experimental Polar Surface Area (EPSA) compound screening Array screening Aspects for consideration Compressibility of carbon dioxide System pressure manipulation Equating the average mobile phase densities in SFC Future refinements References Chapter 6: Application of preparative SFC in the pharmaceutical industry Introduction to the use of preparative SFC Preparative SFC instrumentation and infrastructure Supercritical carbon dioxide as a chromatographic mobile phase Liquid CO2 supply infrastructure and engineering challenges CO2 delivery for preparative SFC Features and controls during preparative SFC Flow control Backpressure regulation Injection considerations Mixed stream injection Modifier stream injection Extraction injection Temperature control Detection systems Fraction collection Method development in preparative SFC Mobile phase considerations Achiral SFC stationary phases Chiral stationary phases (CSP) for SFC Preparative SFC applications: Case studies within AstraZeneca research laboratories A practical approach to analytical to preparative scale-up Overcoming solubility concerns in SFC Flexible solutions to compound instability Automated purification of crude reaction mixtures by SFC Efficient milligram-scale isomer separations Bespoke method optimization for larger multigram separations SFC as a sustainable chromatographic technique Conclusions References Chapter 7: Method development approaches for small-molecule analytes Introduction Method development ``prework´´ What is the purpose of the method and what are suitable performance indicators? What is the development strategy? Understand the analytes Screening tool utilization to identify optimal SFC parameters Instrumentation for method development Chromatographic column selection Stationary phase technology and kinetic performance Influence of instrumentation on the choice of column dimensions Choice of the stationary phase chemistry Mobile phase selection Organic modifier selection Mobile phase additive selection Method optimization Sample dissolution solvent Additive concentration Gradient program, temperature and backpressure Experimental design and in silico retention modeling Method validation Continuous method performance verification Summary Acknowledgments References Chapter 8: Application of SFC for the characterization of formulated drug products Introduction Drug formulations Solid-oral dosage forms Tablets Capsules Liquid and semisolid formulations Semisolid formulations Novel drug formulations Sample preparation procedures Analyte properties and sample diluent selection Water and organic solvents as sample diluents in SFC for APIs and solid-oral dosage forms Impact of water in the sample diluent on peak shape for tablets and capsules Creams and emulsions Filtration Alternative approaches to solubilize analytes in SFC compatible solvents Liquid-liquid extraction Solid-phase extraction Supercritical fluid extraction Characterization of polymer excipients Characterization of polyethylene glycol Characterization of Tween 20 and Tween 80 Characterization of polyoxyethylene alkyl ethers Sodium stearyl fumarate Conclusions Acknowledgments Appendix: Constituents of formulated drugs discussed in chapter References Chapter 9: Expanding the boundaries of SFC: Analysis of biomolecules Historical problems analyzing polar molecules via SFC Early problems using SFC for analysis of polar molecules Deciphering the role of polar modifiers in SFC Deciphering the role of polar additives in SFC Early attempts to analyze biomolecules by SFC Realization that SFC does not need to be ``supercritical´´ Role of water in modern SFC Early use of water in SFC Improving chromatographic efficiency Increasing solubility of other additives Improving ionization efficiency in mass spectrometry Use of water in preparative purifications Inducing changes in retention mechanisms Enhanced-fluidity liquid chromatography Early history of EFLC Modern EFLC–Expansion to biomolecules of increasing polarity Modern EFLC–Expansion to biomolecules of increasing molecular weight Expansion of EFLC Moving toward ``unified chromatography´´ Applications of SFC to biomolecules Lipids Carbohydrates Amino acids Peptides and proteins Nucleic acid building blocks Concluding remarks References Chapter 10: Different detectors used with SFC Introduction to detectors used with modern SFC Generic detectors used with SFC Flame ionization detector UV–Vis detector Aerosol-based detectors Evaporative light-scattering detector Charged aerosol detector Condensation nucleation light-scattering detector Considerations during method development using aerosol detectors Applications Coupling SFC to mass spectrometric detectors Practicalities of hyphenation Selection and impact of the mass analyzer Conclusions Acknowledgment References Chapter 11: SFC in GMP testing and quality control of medicinal drug products Introduction Current use of SFC in pharmaceutical development Why do regulatory submission methods still not utilize SFC? Examples of validated and registered SFC methods Transfer of methods to manufacturing QC facilities Case study: TT of early stage SFC methods between sites Method transfers between different instrument types Case study: Inter-laboratory studies demonstrating SFC as an alternative to HPLC for compendial methods Instrument qualification Future requirements toward regulatory acceptance of SFC methods Column classification Pharmacopeial updates Establishing the technique within development functions Preparation for investment in SFC in manufacturing QC Conclusions Acknowledgments References Chapter 12: Best practices and instrumental troubleshooting for successful SFC methods Introduction System configuration Best practice for system setup System performance checks Dwell test System suitability test check ABPR trace System pressure trace Cylinder issues Instrument troubleshooting and errors Pumping issues ABPR issues Low pressure High pressure Poor mobile phase mixing UV detector issues Detector flow cell Atmospheric detector issues (ELSD, CAD, MS) Eluent effects Solvent modifier effects Needle wash solvents Sample diluent effects Chromatographic troubleshooting Variable retention time Loss of analyte retention Optimization of detector sensitivity Flow rate effects on chromatographic noise levels Conclusions References Chapter 13: The state-of-the-art and future perspectives for SFC Introduction Reflection on previous chapters Theoretical performance of SFC Influence of new column particle technologies and instrument design on SFC performance Considerations for future instrument application and design Future directions with SFC column selectivity and efficiency Method development, performance and prediction aspects In-silico retention modeling and prediction Method scaling Future directions and applications of SFC Biomolecule characterization Plasticizers, extractable and leachable Nitrosamines, mutagenic impurities Sustainable instrument design Instrument power consumption and potential for miniaturization Future SFC instrumental capability Conclusions Acknowledgments References List of abbreviations Index Back Cover