ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Power System Protection and Relaying. Computer-Aided Design Using SCADA Technology

دانلود کتاب حفاظت و رله سازی سیستم قدرت طراحی به کمک کامپیوتر با استفاده از فناوری SCADA

Power System Protection and Relaying. Computer-Aided Design Using SCADA Technology

مشخصات کتاب

Power System Protection and Relaying. Computer-Aided Design Using SCADA Technology

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781032495507, 9781003394389 
ناشر: CRC Press 
سال نشر: 2024 
تعداد صفحات: [405] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 Mb 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Power System Protection and Relaying. Computer-Aided Design Using SCADA Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب حفاظت و رله سازی سیستم قدرت طراحی به کمک کامپیوتر با استفاده از فناوری SCADA نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب حفاظت و رله سازی سیستم قدرت طراحی به کمک کامپیوتر با استفاده از فناوری SCADA




توضیحاتی درمورد کتاب به خارجی

The book is intended as a textbook for a senior-level undergraduate student in electrical and computer engineering departments and is appropriate for Graduate Students, Industry Professionals, Researchers, and Academics.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Authors
Chapter 1 Introduction to Power Protection Systems
	1.1 Introduction
	1.2 Philosophy of Power System Protection
	1.3 Effects of Faults
	1.4 Performance Requirements of Protection System
	1.5 Basic Protection Scheme Components
	1.6 Protective Relay
	1.7 Transducers
		1.7.1 Current Transformer
			1.7.1.1 IEC Standard Accuracy Classes
		1.7.2 Voltage Transformer
		1.7.3 Magnetic Voltage Transformer (VT)
		1.7.4 Capacitive Voltage Transformers (CVT)
	1.8 Relay Connection to the Primary System
	1.9 CT Error
	1.10 Protective Zones
		1.10.1 Backup Protection
		1.10.2 Selectivity and Zones of Protection Selectivity
	1.11 R–X Diagram
	Problems
Chapter 2 Protective Relays
	2.1 Introduction
	2.2 Data Required for the Relay Setting
	2.3 Class of Measuring Relays
	2.4 Basic Definitions and Standard Device Numbers
		2.4.1 Definitions of Terms
		2.4.2 Devices Numbers
	2.5 Classification of Relays
	2.6 Types of Relays
		2.6.1 Electromagnetic Relays
			2.6.1.1 Electromechanical Relays
			2.6.1.2 Magnetic Induction Relays
			2.6.1.3 Magnetic Attraction Relays
	2.7 Comparator Relays
		2.7.1 Generalized Amplitude Comparator
	2.8 Advantages of Electromechanical Relays
	2.9 Solid-State Relays
		2.9.1 Solid-State Relay Principle of Operation
	2.10 Computerized Relay
		2.10.1 Digital Relays
		2.10.2 Digital Relays Operation
		2.10.3 Signal Path for Microprocessor Relays
		2.10.4 Digital Relay Construction
		2.10.5 Advantages of Digital Relays
	2.11 Numerical Relays
		2.11.1 Numerical Measurement Treatment
		2.11.2 Advantages of Numerical Technology
	2.12 Electromagnetic vs. Computerized
	Problems
Chapter 3 Protection Systems with SCADA Technology
	3.1 Introduction
	3.2 Background
		3.2.1 Benefit sand Drawbacks
		3.2.2 Applications
		3.2.3 Challenges
	3.3 SCADA System and Its Levels
	3.4 Basic Functions of the SCADA Systems
		3.4.1 Remote Supervision
		3.4.2 Remote Control of the Process
		3.4.3 Graphics Trends Presentation
		3.4.4 Alarm Presentations
		3.4.5 Storage of Historical Information
			3.4.5.1 Field Instrumentation
			3.4.5.2 PLCs and RTUs
			3.4.5.3 Remote Communications Networks
			3.4.5.4 SCADA Host Software
	3.5 SCADA Architecture Development
	3.6 Security
	3.7 Future Implementations
	3.8 Hardware Devices
Chapter 4 Faults Analysis
	4.1 Introduction
	4.2 Fault Concept
	4.3 Types of Faults
	4.4 Symmetrical Fault Analysis
		4.4.1 Simplified Models of Synchronous Machines for Transient Analysis
		4.4.2 Transient Phenomena
		4.4.3 Three-Phase Short-Circuit Unloaded Synchronous Machine
		4.4.4 Effect of Load Current
	4.5 Unsymmetrical Faults Analysis
	4.6 Symmetrical Components
		4.6.1 Positive-Sequence Components
		4.6.2 Negative-Sequence Components
		4.6.3 Zero-Sequence Components
	4.7 Effect of Symmetrical Components on Impedance
	4.8 Phase Shift Δ/Y Connection Δ/Y
	4.9 Sequence Network of Unloaded Generator
		4.9.1 Positive-Sequence Network
		4.9.2 Negative-Sequence Network
		4.9.3 Zero Sequence
	4.10 Analysis of Unsymmetrical Faults Using the Method of Symmetrical Component
		4.10.1 Single Line-to-Ground Fault
		4.10.2 Line-to-Line Fault
		4.10.3 Double Line-to-Ground Fault
	4.11 Fault Classification
	4.12 Assumptions and Simplifications
	4.13 Fault Voltage-Amps
	4.14 Fault Analysis by the SCADA System
	4.15 Measurement of Zero-Sequence Impedance
	4.16 Symmetric (Three-Pole) Short Circuit
	4.17 Asymmetric Short Circuits
		4.17.1 Single-Pole Short Circuit (Earth Fault)
		4.17.2 Two-Pole Short Circuit with Earth Fault
		4.17.3 Two-Pole Short Circuit without Earth Fault
	4.18 Earth Faults and Their Compensation
		4.18.1 Earth-Fault Compensation
		4.18.2 Earth Fault with an Isolated Neutral Point
	4.19 Overcurrent Time Protection
	Problems
Chapter 5 Fuses and Circuit Breakers
	5.1 Introduction
	5.2 Load and Fuse Current
	5.3 Fuses, Sectionalizes, Reclosers
	5.4 ELCB, MCB, and MCCB
		5.4.1 Earth Leakage Circuit Breaker (ELCB)
		5.4.2 Miniature Circuit Breaker (MCB)
		5.4.3 Molded Case Circuit Breaker (MCCB)
	5.5 Construction and Working of a Fuse
	5.6 Characteristics of a Fuse
		5.6.1 Fuse Current-Carrying Capacity
		5.6.2 Breaking Capacity
		5.6.3 Rated Voltage of Fuse
		5.6.4 I[sup(2)]t Value of Fuse
		5.6.5 Response Characteristic of a Fuse
	5.7 Classification of Fuses
	5.8 Types of Fuses
		5.8.1 DC Fuses
		5.8.2 AC Fuses
	5.9 Cartridge Fuses
	5.10 D–Type Cartridge Fuse
	5.11 HRC (High Rupturing Capacity) Fuse or Link-Type Cartridge Fuse
	5.12 HV Fuses
	5.13 Automotive, Blade Type, and Fuses of Bolted Type
	5.14 SMD Fuses (Surface Mount Fuse), Chip, Radial, and Lead Fuses
	5.15 Fuse Characteristics
		5.15.1 Fuse Type
		5.15.2 Rated Currents and Voltages
		5.15.3 Conventional Non-Fusing and Fusing Currents
		5.15.4 Operating Zone
		5.15.5 Breaking Capacity
		5.15.6 Selectivity
	5.16 Rewireable Fuses
	5.17 Thermal Fuses
	5.18 Resettable Fuses
	5.19 Uses and Applications of Fuses
	5.20 HV Circuit Breakers
		5.20.1 Oil Circuit Breakers
			5.20.1.1 Bulk Oil Circuit Breaker (BOCB)
			5.20.1.2 Minimum Oil Circuit Breaker (MOCB)
		5.20.2 SF6 Circuit Breakers
			5.20.2.1 Disadvantages
			5.20.2.2 Applications
		5.20.3 Vacuum Circuit Breakers
			5.20.3.1 VCB Circuit Breaker Components
		5.20.4 Air-Blast Circuit Breakers
			5.20.4.1 Types of Air-Blast Circuit Breakers
	5.21 Directional Overcurrent Time Protection
	5.22 Testing Direction Recognition
	Problems
Chapter 6 Overcurrent Relay
	6.1 Introduction
	6.2 Overcurrent Relay
		6.2.1 Instantaneous Overcurrent Relay
		6.2.2 Definite Time Overcurrent Relay
			6.2.2.1 Application
			6.2.2.2 The Drawback of the Relay
		6.2.3 Inverse Time Overcurrent Relay
		6.2.4 IDMT Relay
		6.2.5 Very Inverse Relay
			6.2.5.1 Application of the Very Inverse Relay
		6.2.6 Extremely Inverse Relay
		6.2.7 Directional Overcurrent
	6.3 Plug Setting Multiplier (PSM) and Time Multiplier Setting (TMS)
	6.4 Standard Formula for Overcurrent Relay
	6.5 Relay Coordination
		6.5.1 Primary and Backup Protection
		6.5.2 Method of Relay Coordination
			6.5.2.1 Discrimination by Time
			6.5.2.2 Discrimination by Current
			6.5.2.3 Discrimination by Both Time and Current
	6.6 Requirements for Proper Relay Coordination
	6.7 Hardware and Software for Overcurrent Relays
	6.8 Overvoltage and Undervoltage Protection
		6.8.1 Undervoltage Test
		6.8.2 Overvoltage Test
		6.8.3 Hysteresis Test
	6.9 Directional Power Protection
	6.10 Testing Forward and Reverse Power
		6.10.1 Test of Forward Power
		6.10.2 Test of Reverse Power
	Problems
Chapter 7 Transmission Line Protection
	7.1 Introduction
	7.2 Distance Relay
	7.3 Setting of Distance Relay
	7.4 Drawback of Distance Relay
	7.5 Parallel Ring Mains
	7.6 Impedance, Reactance, and MHO Relay
		7.6.1 Impedance Relay Protection Setting Diagram
		7.6.2 Reactance Relay Protection Setting Diagram
		7.6.3 MHO Relay Protection Setting Diagram
	7.7 Fundamentals of Differential Protection Systems
	7.8 Directional Overcurrent Relay
	7.9 Direction or Phase of the Fault Current
	7.10 Protection of Parallel Lines (Parallel Operation)
	7.11 Minimum Pick-Up Value
	7.12 Parametrizing Non-Directional Relays
	7.13 Time Overcurrent Relays
	7.14 Directional Time Overcurrent Relays
	7.15 High-Speed Distance Protection
	7.16 Further Settings
		7.16.1 Characteristic Data
	Problems
Chapter 8 Transformer Protection
	8.1 Introduction
	8.2 Transformer Functions
		8.2.1 Transformer Size
		8.2.2 Location and Function
		8.2.3 Voltage
		8.2.4 Connection and Design
	8.3 Faults on Power Transformer
	8.4 Main Types of Transformer Protection
		8.4.1 Percentage Differential Protection
		8.4.2 Overcurrent Protection
			8.4.2.1 Protection with Fuses
			8.4.2.2 Time-Delay Overcurrent Relays
			8.4.2.3 Instantaneous Relays
		8.4.3 Earth Fault and Restricted Earth Fault Protection
		8.4.4 Buchholz Relay
			8.4.4.1 Principle of Operation
		8.4.5 Oil Pressure Relief Devices
		8.4.6 Oil Temperature (F49)
		8.4.7 Winding Temperature (F49)
	8.5 Voltage Balance Relay
	8.6 Transformer Magnetizing In-rush
		8.6.1 The Magnitude of Magnetizing In-rush Current
		8.6.2 Harmonics of Magnetizing In-rush Current
	8.7 Modeling of Power Transformer Differential Protection
		8.7.1 Differential Protection Difficulties
			8.7.1.1 In-rush Current During Initial Energization
			8.7.1.2 False Trip Due to CT Characteristics
			8.7.1.3 False Trip Due to Tap Changer
	8.8 Percentage Differential Relay Modeling
	8.9 Phasor Model
	8.10 Three-Phase to Ground Fault at the Loaded Transformer
	8.11 Magnetizing In-rush Current
	8.12 Three Phases to Ground Fault at the Loaded Transformer
	8.13 Phase-to-Ground External Fault at the Loaded Transformer
	8.14 Two-Phase-to-Ground Fault at the Loaded Transformer
	Problems
Chapter 9 Generator, Motor, and Busbar Protection
	9.1 Introduction
	9.2 Generator Fault Types
		9.2.1 Rotor Protection
		9.2.2 Unbalanced Loading
		9.2.3 Overload Protection
		9.2.4 Overspeed Protection
		9.2.5 Overvoltage Protection
		9.2.6 Failure or Prime-Mover
		9.2.7 Loss of Excitation
			9.2.7.1 Recommended Settings
	9.3 Effects of Generator Bus Faults
	9.4 Internal Faults
		9.4.1 Differential Protection (Phase Faults)
		9.4.2 Differential Protection (Ground Faults)
		9.4.3 Field Grounds
		9.4.4 Phase Fault Backup Protection
		9.4.5 The 95% Stator Earth Fault Protection (64G1)
		9.4.6 The 100% Stator Earth Fault Protection (64G2)
		9.4.7 Voltage Restrained Overcurrent Protection (51/27 G)
		9.4.8 Low Forward Power Relay (37G)
		9.4.9 Reverse Power Relay (32G)
		9.4.10 Generator Under Frequency Protection (81 G)
		9.4.11 Generator Overvoltage Protection (59 G)
	9.5 Typical Relay Settings
	9.6 Motor Protection
		9.6.1 Typical Protective Settings for Motors
		9.6.2 Motor Protective Device
		9.6.3 Motor Protection by Fuses
	9.7 Bus Bars Protection
		9.7.1 Bus Protection Schemes
		9.7.2 Bus Differential Relaying Schemes
			9.7.2.1 Basic Differential System
			9.7.2.2 Bus Differential Protection with Overcurrent Relays
			9.7.2.3 Bus Protection with Percentage Differential Relays
			9.7.2.4 Bus High-Impedance Voltage Differential Protection
			9.7.2.5 Bus Partial Differential Protection
	Problems
Chapter 10 High-Impedance Faults
	10.1 Introduction
	10.2 Characteristics of HIFs
	10.3 HIF’s Detection
		10.3.1 Feature Extraction
		10.3.2 Pattern Recognition (Classification)
	10.4 Power Distribution Network
	10.5 Source Model
	10.6 Power Transformer Model
	10.7 Line Model
	10.8 Load Model
	10.9 Shunt Capacitor Model
	10.10 Nonlinear Load Model
	10.11 Induction Motor Model
	10.12 Fault Model
		10.12.1 Symmetrical Fault Model
		10.12.2 Line-to-Ground Fault Model
		10.12.3 Line-to-Line Fault Model
	10.13 Procedural Events Modeling and Techniques
	10.14 The Fourier Transform
	Problems
Chapter 11 Grounding of Power System
	11.1 Introduction
	11.2 The Concept of Grounding
	11.3 Purposes of System Grounding
	11.4 Methods of System-Neutral Grounding
		11.4.1 Ungrounded System
		11.4.2 Methods of System-Neutral Grounding
		11.4.3 Reactance Grounding
	11.5 Equivalent-Circuit Representation of Grounding Systems
	11.6 Touch and Step Voltages
	11.7 Typical Inspection
	11.8 Grounding Electrodes
	11.9 Grounding Verification Control System
	11.10 Soil Measurements
		11.10.1 The Soil Model
		11.10.2 Soil Characteristics
		11.10.3 Wenner Method
		11.10.4 Driven Rod Technique
	11.11 Resistance of Grounding Systems
	11.12 Types of the Electrode Grounding System
		11.12.1 Hemispherical Electrode Hidden in Globe
		11.12.2 Two Hemispheres Inserted in Earth
		11.12.3 Other Simple Grounding Systems
	11.13 Measurement of Ground Electrode Resistance
		11.13.1 Three-Electrode Method
		11.13.2 Show Up of Potential Method
		11.13.3 Theory of the Fall of Potential
		11.13.4 Hemispherical Electrodes
			11.13.4.1 General Case
		11.13.5 Electrical Center Method
	Problems
Appendix A: Relay and Circuit Breaker Applications
Bibliography
Index




نظرات کاربران