ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Power Plant Equipment Operation and Maintenance Guide

دانلود کتاب راهنمای بهره برداری و نگهداری تجهیزات نیروگاهی

Power Plant Equipment Operation and Maintenance Guide

مشخصات کتاب

Power Plant Equipment Operation and Maintenance Guide

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780071772228, 0071772219 
ناشر: McGraw-Hill Professional 
سال نشر: 2011 
تعداد صفحات: 768
[770] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 Mb 

قیمت کتاب (تومان) : 59,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Power Plant Equipment Operation and Maintenance Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای بهره برداری و نگهداری تجهیزات نیروگاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای بهره برداری و نگهداری تجهیزات نیروگاهی

راهنمای قطعی انتخاب، بهره برداری و نگهداری تجهیزات نیروگاهی راهنمای عملیات و تعمیر و نگهداری تجهیزات نیروگاه، پوشش دقیقی از انواع مختلف نیروگاه ها مانند نیروگاه های سیکل ترکیبی مدرن، سیکل ترکیبی و سیکل ترکیبی گازی سازی یکپارچه (IGCC) را ارائه می دهد. این کتاب طراحی، انتخاب، بهره برداری، نگهداری و اقتصاد تمام این نیروگاه ها را شرح می دهد. بهترین گزینه‌های افزایش توان موجود، از جمله مشعل‌های مجرای، خنک‌کننده تبخیری، سرمایش هوای ورودی، سرمایش جذبی، تزریق بخار و آب، و شلیک پیک مورد بحث قرار گرفته‌اند. این منبع عمیق به اندازه، انتخاب، محاسبات، بهره برداری، تست های تشخیصی، عیب یابی، تعمیر و نگهداری و نوسازی کلیه تجهیزات نیروگاه، از جمله توربین های بخار، ژنراتورهای بخار، بویلرها، کندانسورها، مبدل های حرارتی، توربین های گاز، کمپرسورها، پمپ ها می پردازد. مکانیسم های آب بندی پیشرفته، یاتاقان های مغناطیسی و ژنراتورهای پیشرفته. پوشش شامل: روش‌هایی برای افزایش قابلیت اطمینان و نگهداری تمام نیروگاه‌ها تجزیه و تحلیل اقتصادی نیروگاه‌های تولید همزمان و سیکل ترکیبی مدرن انتخاب بهترین روش کاهش انتشار برای نیروگاه‌ها نگهداری پیشگیرانه و پیش‌بینی‌کننده مورد نیاز برای نیروگاه‌ها کاربردهای توربین گازی در نیروگاه گیاهان، سیستم های حفاظتی و آزمایش ها


توضیحاتی درمورد کتاب به خارجی

THE DEFINITIVE GUIDE TO SELECTING, OPERATING, AND MAINTAINING POWER PLANT EQUIPMENT Power Plant Equipment Operation and Maintenance Guide provides detailed coverage of different types of power plants such as modern co-generation, combined-cycle, and integrated gasification combined cycle (IGCC) plants. The book describes the design, selection, operation, maintenance, and economics of all these power plants. The best available power enhancement options are discussed, including duct burners, evaporative cooling, inlet-air chilling, absorption chilling, steam and water injection, and peak firing. This in-depth resource addresses the sizing, selection, calculations, operation, diagnostic testing, troubleshooting, maintenance, and refurbishment of all power plant equipment, including steam turbines, steam generators, boilers, condensers, heat exchangers, gas turbines, compressors, pumps, advanced sealing mechanisms, magnetic bearings, and advanced generators. Coverage includes: Methods for enhancing the reliability and maintainability of all power plants Economic analysis of modern co-generation and combined-cycle plants Selection of the best emission-reduction method for power plants Preventive and predictive maintenance required for power plants Gas turbine applications in power plants, protective systems, and tests



فهرست مطالب

Contents
Preface
Acknowledgments
1 Gas Turbine Applications in Power Stations, Gas Turbine Protective Systems, and Tests
	1.1 Introduction
	1.2 Working Cycle
		1.2.1 Starting
		1.2.2 Shutdown
	1.3 Protection
	1.4 Black Start
	1.5 Routine Tests
	1.6 Bibliography
2 Steam Turbine Selection for Combined-Cycle Power Systems
	2.1 Abstract
	2.2 Introduction
	2.3 Steam Turbine Application to Steam and Gas Plants
		2.3.1 Steam and Gas Plants Structure
		2.3.2 Steam Turbine Exhaust Size Selection
		2.3.3 Non-Exhaust Cycle-Steam Conditions
		2.3.4 Reheat Cycle Steam Condition
	2.4 Steam Turbine Product Structure
		2.4.1 Performance
		2.4.2 Casing Arrangements
		2.4.3 Cogeneration Applications
	2.5 Bibliography
3 Steam Turbine Maintenance
	3.1 Life Cycle Operating Cost of a Steam Turbine
	3.2 Steam Turbine Reliability
	3.3 Boroscopic Inspection
	3.4 Major Cause of Steam Turbine Repair and Maintenance
	3.5 Maintenance Activities
	3.6 Advanced Design Features for Steam Turbines
	3.7 Bibliography
4 Frequently Asked Questions About Turbine-Generator Balancing, Vibration Analysis, and Maintenance
	4.1 Balancing
	4.2 Vibration Analysis—Cam Bell Diagram
	4.3 Turbine-Generator Maintenance
5 Features Enhancing the Reliability and Maintainability of Steam Turbines
	5.1 Steam Turbine Design Philosophy
	5.2 Measures of Reliability, Availability, and Maintainability
	5.3 Design Attributes Enhancing Reliability
		5.3.1 Overall Mechanical Design Approach
		5.3.2 Modern Steam Turbine Design Features
	5.4 Design Attributes Enhancing Maintainability
		5.4.1 Maintainability Features
		5.4.2 Maintenance Recommendations
	5.5 Cost/Benefit Analysis of High Reliability, Availability, and Maintenance Performance
		5.5.1 Reliability, Availability, and Maintainability Value Calculation
	5.6 Conclusion
	5.7 Bibliography
6 Steam Generators
	6.1 Introduction
	6.2 The Fire-Tube Boiler
	6.3 The Water-Tube Boiler
		6.3.1 The Straight-Tube Boiler
		6.3.2 The Bent-Tube Boiler
	6.4 The Water-Tube Boiler: Recent Developments
		6.4.1 The Boiler Walls
		6.4.2 The Radiant Boiler
	6.5 Water Circulation
	6.6 The Steam Drum
	6.7 Superheaters and Reheaters
		6.7.1 Convection Superheater
		6.7.2 Radiant Superheater
	6.8 Once-Through Boilers
	6.9 Economizers
	6.10 Air Preheaters
	6.11 Fans
		6.11.1 Fan Control
		6.11.2 The Stack
	6.12 Steam Generator Control
		6.12.1 Feedwater and Drum-Level Control
		6.12.2 Steam-Pressure Control
		6.12.3 Steam-Temperature Control
	6.13 Bibliography
7 Boilers (Steam Generators), Heat Exchangers, and Condensers
	7.1 Heat Transfer
		7.1.1 Steady-State Conduction
	7.2 Thermal Conductivities
		7.2.1 Conduction Through Cylindrical Walls
	7.3 Combination Heat-Transfer Effects
	7.4 Convection Heat-Transfer Coefficients
		7.4.1 Turbulent Forced-Convection Flow Inside Long Circular Tubes
		7.4.2 Streamlined Forced-Convection Flow Inside Tubes (Water and Oils)
		7.4.3 Turbulent Forced-Convection Flow Across N Onbaffled Tube Banks with Circular Tubes
	7.5 Boiling Liquids and Condensing Vapors
	7.6 Heat Exchangers
		7.6.1 Shell-and-Tube Heat Exchangers
8 Integrated Gasification Combined Cycles
	8.1 Introduction
	8.2 IGCC Processes
	8.3 IGCC Plant Considerations
		8.3.1 Turnkey Cost
		8.3.2 Size of IGCC
		8.3.3 Output Enhancement
	8.4 Emission Reduction
		8.4.1 Nitrogen Oxides
		8.4.2 Air Pollutants
		8.4.3 Mercury
		8.4.4 Carbon Dioxide
	8.5 Reliability, Availability, and Maintenance
	8.6 Bibliography
9 Single-Shaft Combined-Cycle Power Generation Plants
	9.1 Introduction
	9.2 Performance of Single-Shaft Combined-Cycle Plants
	9.3 Environmental Impact
	9.4 Equipment Configurations
	9.5 Starting Systems
	9.6 Auxiliary Steam Supply
	9.7 Plant Arrangement
	9.8 Maintenance
	9.9 Advantages of Single-Shaft Combined-Cycle Plants
	9.10 Bibliography
10 Selection of the Best Power Enhancement Option for Combined-Cycle Plants
	10.1 Plant Description
	10.2 Evaluation of Inlet-Air Pre-Cooling Option
	10.3 Evaluation of Inlet-Air Chilling Option
	10.4 Evaluation of Absorption Chilling System
	10.5 Evaluation of the Steam and Water Injection Options
	10.6 Evaluation of Supplementary Firing in HRSG Option
	10.7 Comparison of All the Power Enhancement Options
	10.8 Bibliography
11 Economics of Combined-Cycle and Cogeneration Plants
	11.1 Introduction
	11.2 Natural Gas Prices
	11.3 Economic Growth
	11.4 Financial Analysis
	11.5 Base Case
	11.6 Combined-Cycle Configuration
	11.7 Capital Cost
	11.8 Operating and Maintenance Cost
	11.9 Economic Evaluation of Different Combined-Cycle Configurations
	11.10 Electricity Purchase Rate
	11.11 Economic Consideration
	11.12 Conclusions
	11.13 Bibliography
	11.14 Appendix: Definitions of Terms Used in the Tables
	11.15 Appendix: Financial Analysis of the Different Configurations of Combined-Cycle Plants
12 Wind Power Turbine Generators—Brushless Double-Feed Generators
	12.1 Introduction
	12.2 Basic System Configuration
	12.3 Equivalent Circuit for the Brushless Double-Fed Machine
	12.4 Parameter Extraction
	12.5 Generator Operation
	12.6 Converter Rating
	12.7 Machine Control
	12.8 Conclusions
	12.9 Bibliography
13 Gas Laws and Compression Principles
	13.1 Introduction
	13.2 Symbols
		13.2.1 Compressor Operation
	13.3 First Law of Thermodynamics
	13.4 Second Law of Thermodynamics
		13.4.1 Ideal or Perfect Gas Laws
		13.4.2 Property Relationships
		13.4.3 Vapor Pressure
		13.4.4 Partial Pressures
		13.4.5 Critical Conditions
		13.4.6 Gas Mixtures
		13.4.7 The Mole
		13.4.8 Volume Percent of Constituents
		13.4.9 Molecular Weight of a Mixture
		13.4.10 Specific Gravity and Partial Pressure
		13.4.11 Specific Heats
		13.4.12 Pseudo-Critical Conditions and Compressibility
		13.4.13 Weight-Basis Item
		13.4.14 Compression Cycles
		13.4.15 Compressor Polytropic Efficiency
		13.4.16 Compressor Power Requirement
		13.4.17 Compressibility Correction
		13.4.18 Multiple Staging
		13.4.19 Compressor Volumetric Flow Rate
		13.4.20 Cylinder Clearance and Volumetric Efficiency
		13.4.21 Cylinder Clearance and Compression Efficiency
	13.5 Bibliography
	13.6 Appendix: List of Symbols
14 Compressor Types and Applications
	14.1 Introduction
	14.2 Positive Displacement Compressors
		14.2.1 Rotary Compressors
		14.2.2 Reciprocating Compressors
	14.3 Dynamic Compressors
		14.3.1 Centrifugal Compressors
		14.3.2 Axial Flow Compressors
	14.4 Bibliography
15 Compressors
	15.1 Compressor Types
	15.2 Compressor Operation
	15.3 Gas Laws
	15.4 Compressor Performance Measurement
		15.4.1 Inlet Conditions
		15.4.2 Compressor Performance
		15.4.3 Energy Available for Recovery
		15.4.4 Positive Displacement Compressors
		15.4.5 Reciprocating Compressors
		15.4.6 Trunk Piston Compressors
		15.4.7 Sliding Crosshead Piston Compressors
		15.4.8 Diaphragm Compressors
		15.4.9 Bellows Compressors
		15.4.10 Rotary Compressors
		15.4.11 Rotary Screw Compressors
		15.4.12 Lobe-Type Air Compressors
		15.4.13 Sliding Vane Compressors
		15.4.14 Liquid Ring Compressors
		15.4.15 Dynamic Compressors
		15.4.16 Centrifugal Compressors
		15.4.17 Axial Compressors
		15.4.18 Air Receivers
	15.5 Compressor Control
	15.6 Compressor Unloading System
	15.7 Intercooler and Aftercoolers
	15.8 Filters and Air Intake Screens
	15.9 Preventive Maintenance and Housekeeping
	15.10 Bibliography
16 Performance of Positive Displacement Compressors
	16.1 Compressor Performance
		16.1.1 Positive Displacement Compressors
		16.1.2 Reciprocating Compressor Rating
		16.1.3 Reciprocating Compressor Sizing
		16.1.4 Capacity Control
		16.1.5 Compressor Performance
	16.2 Reciprocating Compressors
		16.2.1 Compressor Valves
		16.2.2 Reciprocating Compressors Leakage
		16.2.3 Screw Compressors Leakage
	16.3 Bibliography
17 Reciprocating Compressors
	17.1 Introduction
	17.2 Crankshaft Design
	17.3 Bearings and Lubrication Systems
	17.4 Connecting Rods
	17.5 Crossheads
	17.6 Frames and Cylinders
	17.7 Compressor Cooling
	17.8 Pistons
	17.9 Piston and Rider Rings
	17.10 Valves
	17.11 Piston Rods
	17.12 Packings
	17.13 Cylinder Lubrication
	17.14 Distance Pieces
	17.15 Bibliography
18 Reciprocating Air Compressors Troubleshooting and Maintenance
	18.1 Introduction
	18.2 Location
	18.3 Foundation
	18.4 Air Filters and Suction Lines
	18.5 Air Receiver Location and Capacity
	18.6 Starting a New Compressor
	18.7 Lubrication
	18.8 Non-Lubricated Cylinders
	18.9 Valves
	18.10 Piston Rings
	18.11 Intercoolers and Aftercoolers
	18.12 Cleaning
	18.13 Packing
	18.14 Bibliography
19 Diaphragm Compressors
	19.1 Introduction
	19.2 Theory of Operation
	19.3 Compressor Design
	19.4 Materials of Construction
	19.5 Accessories
	19.6 Cleaning and Testing
	19.7 Applications
		19.7.1 Automotive Air Bag Filling
		19.7.2 Petrochemical Industries
	19.8 Limitations
	19.9 Installation and Maintenance
	19.10 Diaphragm Compressor Specification
	19.11 Bibliography
20 Rotary Screw Compressors and Filter Separators
	20.1 Twin-Screw Machines
		20.1.1 Compressor Operation
		20.1.2 Applications of Rotary Screw Compressors
		20.1.3 Dry and Liquid Injected Compressors
		20.1.4 Operating Principles
		20.1.5 Flow Calculation
		20.1.6 Power Calculation
		20.1.7 Temperature Rise
		20.1.8 Capacity Control
		20.1.9 Mechanical Construction
		20.1.10 Industry Experience
		20.1.11 Maintenance History
		20.1.12 Performance Summary
	20.2 Oil-Flooded Single-Screw Compressors
	20.3 Selection of Modern Reverse-Flow Filter Separators
		20.3.1 Conventional Filter Separators and Self-Cleaning Coalescers
		20.3.2 Removal Efficiencies
		20.3.3 Filter Quality
		20.3.4 Selection of the Most Suitable Gas Filtration Equipment
		20.3.5 Evaluation of the Proposed Filtration Configurations
		20.3.6 Life-Cycle-Cost Calculations
	20.4 Conclusions
	20.5 Bibliography
	20.6 Appendix: Coke Fuel
		20.6.1 Introduction
		20.6.2 Properties and Usage
		20.6.3 Other Coking Processes
		20.6.4 Bibliography
21 Straight Lobe Compressors
	21.1 Applications
		21.1.1 Operating Characteristics
	21.2 Operating Principle
	21.3 Pulsation Characteristics
	21.4 Noise Characteristics
	21.5 Torque Characteristics
	21.6 Construction
		21.6.1 Rotors
		21.6.2 Casing
		21.6.3 Timing Gears
		21.6.4 Bearings
	21.7 Staging
		21.7.1 Higher Compression Ratios
		21.7.2 Power Reduction
	21.8 Installation
	21.9 Bibliography
22 Recent Developments in Separating Liquid from Gases
	22.1 Introduction
	22.2 Removal Mechanisms
	22.3 Liquid/Gas Separation Technologies
		22.3.1 Gravity Separators
		22.3.2 Centrifugal Separators
		22.3.3 Mist Eliminators
		22.3.4 Filter Vane Separators
		22.3.5 Liquid/Gas Coalescers
		22.3.6 Selection of Liquid/Gas Separation Equipment
	22.4 Formation of Fine Aerosols
	22.5 Ratings and Sizing of Separation Equipment
	22.6 Bibliography
23 Dynamic Compressors Technology
	23.1 Introduction
	23.2 Centrifugal Compressor Overview
	23.3 Axial Compressors Overview
	23.4 Bibliography
24 Simplified Equations for Determining the Performance of Dynamic Compressors
	24.1 Nonoverloading Characteristics of Centrifugal Compressors
	24.2 Stability
	24.3 Speedy Change
	24.4 Compressor Drive
	24.5 Calculations
	24.6 Bibliography
25 Centrifugal Compressors—Components, Performance Characteristics, Balancing, Surge Prevention Systems, and Testing
	25.1 Introduction
	25.2 Casing Configuration
	25.3 Construction Features
		25.3.1 Diaphragms
		25.3.2 Interstage Seals
		25.3.3 Balance Piston Seal
		25.3.4 Impeller Thrust
	25.4 Performance Characteristics
		25.4.1 Slope of the Centrifugal Compressor Head Curve
		25.4.2 Stonewall
		25.4.3 Surge
		25.4.4 Off-Design Operation
	25.5 Rotor Dynamics
	25.6 Rotor Balancing
	25.7 Surge Prevention Systems
	25.8 Surge Identification
	25.9 Liquid Entrainment
	25.10 Instrumentation
	25.11 Cleaning Centrifugal Compressors
	25.12 Bibliography
	25.13 Appendix: Boundary Layer
		25.13.1 Definition
		25.13.2 Description of the Boundary Layer
		25.13.3 Separation: Wake
		25.13.4 Bibliography
26 Compressor Auxiliaries, Off-Design Performance, Stall, and Surge
	26.1 Introduction
	26.2 Compressor Auxiliaries
	26.3 Compressor Off-Design Performance
		26.3.1 Low Rotational Speeds
		26.3.2 High Rotational Speeds
	26.4 Performance Degradation
	26.5 Bibliography
27 Dynamic Compressors Performance
	27.1 Description of a Centrifugal Compressor
	27.2 Centrifugal Compressor Types
		27.2.1 Compressors with Horizontally Split Casings
		27.2.2 Centrifugal Compressors with Vertically Split Casings
		27.2.3 Compressors with Bell Casings
		27.2.4 Pipeline Compressors
		27.2.5 SR Compressors
	27.3 Performance Limitations
		27.3.1 Surge Limit
		27.3.2 Stonewall
		27.3.3 Prevention of Surge
		27.3.4 Anti-Surge Control Systems
	27.4 Bibliography
28 Compressor Seal Systems
	28.1 Introduction
	28.2 The Supply System
	28.3 The Seal Housing System
	28.4 The Atmospheric Draining System
	28.5 The Seal Leakage System
	28.6 Gas Seals
	28.7 Liquid Seals
	28.8 Liquid Bushing Seals
	28.9 Contact Seals
	28.10 Restricted Bushing Seals
	28.11 Seal Supply Systems
		28.11.1 Flow Through the Gas Side Contact Seal
		28.11.2 Flow Through the Atmospheric Side Bushing Seal
		28.11.3 Flow Through the Seal Chamber
	28.12 Seal Liquid Leakage System
	28.13 Bibliography
29 Dry Seals, Advanced Sealing Mechanisms, and Magnetic Bearings
	29.1 Introduction
	29.2 Background
	29.3 Dry Seals
		29.3.1 Operating Principles
		29.3.2 Operating Experience
		29.3.3 Problems and Solutions
		29.3.4 Upgrade Developments of Dry Seals
		29.3.5 Prevention of Dry Gas Seal Failures by Gas Conditioning
	29.4 Magnetic Bearings
		29.4.1 Operating Principles
		29.4.2 Operating Experience and Benefits
		29.4.3 Problems and Solutions
		29.4.4 Development Efforts
	29.5 Thrust-Reducing Seals
	29.6 Integrated Design
	29.7 Bibliography
30 Compressor System Calculations
	30.1 Calculations of Air Leaks from Compressed-Air Systems
		30.1.1 Annual Cost of Air Leakage
	30.2 Centrifugal Compressor Power Requirement
		30.2.1 Compressor Selection
		30.2.2 Selection of Compressor Drive
		30.2.3 Selection of Air Distribution System
		30.2.4 Water Cooling Requirements for Compressors
		30.2.5 Variation of Compressor Delivery with Inlet Air Temperature
		30.2.6 Sizing of Compressor System Components
		30.2.7 Calculation of Receiver Pump-Up Time
	30.3 Bibliography
31 Pumps
	31.1 Introduction
	31.2 Centrifugal Pumps
		31.2.1 Theory of Operation of a Centrifugal Pump
		31.2.2 Casings and Diffusers
		31.2.3 Radial Thrust
		31.2.4 Hydrostatic Pressure Tests
		31.2.5 Impeller
		31.2.6 Axial Thrust
		31.2.7 Axial Thrust in Multistage Pumps
		31.2.8 Hydraulic Balancing Devices
	31.3 Mechanical Seals
	31.4 Bearings
	31.5 Couplings
	31.6 Bedplates
	31.7 Minimum Flow Requirement
	31.8 Centrifugal Pumps: General Performance Characteristics
	31.9 Cavitation
	31.10 Net Positive Suction Head
	31.11 Maintenance Recommended on Centrifugal Pumps
	31.12 Recommended Pump Maintenance
	31.13 Vibration Analysis
	31.14 Bibliography
32 Centrifugal Pump Mechanical Seal
	32.1 Introduction
	32.2 Basic Components
		32.2.1 Seal Balance
		32.2.2 Face Pressure
		32.2.3 Pressure-Velocity
		32.2.4 Power Consumption
		32.2.5 Temperature Control
		32.2.6 Seal Lubrication/Leakage
33 Positive Displacement Pumps
	33.1 Reciprocating Pumps
		33.1.1 Piston Pumps
		33.1.2 Plunger Pumps
		33.1.3 Diaphragm Pumps
	33.2 Rotary Pumps
		33.2.1 Gear Pumps
		33.2.2 Screw Pumps
		33.2.3 Two- or Three-Lobe Pumps
		33.2.4 Cam Pumps
		33.2.5 Vane Pumps
	33.3 Bibliography
34 Diaphragm Pumps
	34.1 Introduction
	34.2 Mechanically Driven Diaphragm Pumps
	34.3 Hydraulically Actuated Diaphragm Pumps
	34.4 Pneumatically Powered Diaphragm Pumps
	34.5 Materials of Construction
		34.5.1 Advantages and Limitations
		34.5.2 Limitations of Diaphragm Pumps
		34.5.3 Advantages of Diaphragm Pumps
	34.6 Bibliography
35 Canned Motor Pumps
	35.1 Canned Motor Pumps Design and Applications
	35.2 Seal-Less Pump Motors
	35.3 Bibliography
36 Troubleshooting of Pumps
	36.1 Pump Maintenance
		36.1.1 Daily Observations of Pump Operation
		36.1.2 Semiannual Inspection
		36.1.3 Annual Inspection
		36.1.4 Complete Overhaul
		36.1.5 Spare and Repair Parts
		36.1.6 Record of Inspections and Repairs
		36.1.7 Diagnoses of Pump Troubles
	36.2 Troubleshooting of Centrifugal Pumps
	36.3 Troubleshooting of Rotary Pumps
	36.4 Troubleshooting of Reciprocating Pumps
	36.5 Troubleshooting of Steam Pumps
	36.6 Vibration Diagnostics
		36.6.1 Analysis Symptoms
		36.6.2 Impeller Unbalance
		36.6.3 Hydraulic Unbalance
	36.7 Bibliography
37 Water Hammer
	37.1 Introduction
	37.2 Nomenclature
	37.3 Basic Assumptions
	37.4 Effects of Water Hammer in High- and Low-Head Pumping Systems
		37.4.1 Magnitude of the Pulse
		37.4.2 Possible Causes of Water Hammer
		37.4.3 Mitigating Measures to Water Hammer
		37.4.4 Applications of Water Hammer
	37.5 Power Failure at Pump Motors
		37.5.1 Pumps with No Valves at the Pump
		37.5.2 Pumps Equipped with Check Valves
		37.5.3 Controlled Valve Closure
		37.5.4 Surge Suppressors
		37.5.5 Water Column Separation
		37.5.6 Quick-Opening, Slow-Closing Valves
		37.5.7 One-Way Surge Tanks
		37.5.8 Air Chambers
		37.5.9 Surge Tanks
		37.5.10 Nonreverse Ratchets
	37.6 Normal Pump Shutdown
	37.7 Water Hammer Example
	37.8 Steam Hammer
	37.9 Bibliography
38 Selection and Procurement of Pumps
	38.1 Introduction
	38.2 Engineering of System Requirements
		38.2.1 Fluid Type
		38.2.2 System-Head Curves
	38.3 Alternate Modes of Operation
	38.4 Margins
	38.5 Wear
	38.6 Future System Changes
	38.7 Selection of Pump and Driver
		38.7.1 Pump Characteristics
		38.7.2 Code Requirements
		38.7.3 Fluid Characteristics
		38.7.4 Pump Materials
		38.7.5 Driver Type
	38.8 Pump Specifications
		38.8.1 Specification Types
		38.8.2 Data Sheet
		38.8.3 Codes and Standards
		38.8.4 Bidding Documents
		38.8.5 Technical Specification
		38.8.6 Commercial Terms
	38.9 Special Considerations
		38.9.1 Performance Testing
		38.9.2 Pump Drivers
		38.9.3 Special Control Requirements
		38.9.4 Drawing and Data Requirements Form
		38.9.5 Quality Assurance and Quality Control
	38.10 Bidding and Negotiation
		38.10.1 Public and Private Sector
		38.10.2 Bid List
		38.10.3 Evaluation of Bids
		38.10.4 Cost
		38.10.5 Efficiency
		38.10.6 Economic Life
		38.10.7 Spare Parts
		38.10.8 Guarantee/Warranty
		38.10.9 Sample Bid Evaluation
	38.11 Bibliography
39 Pumping System Calculations
	39.1 Analysis of Pumps Installed in Series
	39.2 Analysis of Pumps Installed in Parallel
	39.3 Selection of Pump Driver Speed
	39.4 Affinity Laws for Centrifugal Pumps
	39.5 Centrifugal Pump Selection Using Similarity or Affinity Laws
	39.6 Determination of Centrifugal Pump Capacity and Efficiency
	39.7 Selection of the Best Operating Speed for a Centrifugal Pump
	39.8 Calculate the Total Head of the Pump
	39.9 Pump Selection Procedure
		39.9.1 Draw the Proposed Piping Layout of the Pumping System
		39.9.2 Determine the Required Pump Capacity
		39.9.3 Determine the Total Head on the Pump
		39.9.4 Obtain the Physical and Chemical Data of the Liquid Being Pumped
		39.9.5 Select the Category and Type of Pump
		39.9.6 Evaluate the Selected Pump
	39.10 Bibliography
40 Bearings
	40.1 Types of Bearings
		40.1.1 Ball and Roller Bearings
	40.2 Stresses During Rolling Contact
	40.3 Statistical Nature of Bearing Life
	40.4 Materials and Finish
	40.5 Sizes of Bearings
	40.6 Types of Rolling Bearings
		40.6.1 Thrust Bearings
41 Lubrication
	41.1 The Viscosity of Lubricants
		41.1.1 Viscosity Units
		41.1.2 Significance of Viscosity
		41.1.3 Flow Through Pipes
	41.2 Variation of Viscosity with Temperature and Pressure
		41.2.1 Temperature Effect
		41.2.2 Viscosity Index
		41.2.3 Effect of Pressure on Viscosity
	41.3 Non-Newtonian Fluids
		41.3.1 Greases
		41.3.2 VI-Improved Oils
		41.3.3 Oils at Low Temperatures
	41.4 Variation of Lubricant Viscosity with Use
		41.4.1 Oxidation Reactions
		41.4.2 Physical Reactions
	41.5 Housing and Lubrication
	41.6 Lubrication of Antifriction Bearings
	41.7 Bibliography
42 Used Oil Analysis—A Vital Part of Maintenance
	42.1 Proper Lube Oil Sampling Technique
		42.1.1 Test Description and Significance
		42.1.2 Visual and Sensory Inspections
		42.1.3 Chemical and Physical Tests
	42.2 Summary
	42.3 Bibliography
43 Vibration Analysis
	43.1 The Application of Sine Waves to Vibration
		43.1.1 Multimass Systems
		43.1.2 Resonance
		43.1.3 Logarithms and Decibels
		43.1.4 The Use of Filtering
		43.1.5 Vibration Instrumentation
		43.1.6 Transducer Selection
		43.1.7 Machinery Example
		43.1.8 Vibration Analysis
		43.1.9 Vibration Causes
		43.1.10 Forcing Frequency Causes
		43.1.11 Vibration Severity
	43.2 Appendix: A Case History (Condensate Pump Misalignment)
		43.2.1 Problem
		43.2.2 Test Data and Observations
		43.2.3 Corrective Actions
		43.2.4 Final Results
		43.2.5 Conclusion
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W




نظرات کاربران