ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers: SMART Power Flow Controller

دانلود کتاب راه حل های کنترل جریان برق برای یک شبکه مدرن با استفاده از کنترل کننده های جریان برق SMART: کنترل کننده جریان برق SMART

Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers: SMART Power Flow Controller

مشخصات کتاب

Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers: SMART Power Flow Controller

دسته بندی: انرژی
ویرایش:  
نویسندگان: ,   
سری: IEEE Press Series on Power and Energy Systems 
ISBN (شابک) : 1119824354, 9781119824350 
ناشر: Wiley-IEEE Press 
سال نشر: 2021 
تعداد صفحات: 716 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 51 مگابایت 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers: SMART Power Flow Controller به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راه حل های کنترل جریان برق برای یک شبکه مدرن با استفاده از کنترل کننده های جریان برق SMART: کنترل کننده جریان برق SMART نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright Page
Contents
Authors’ Biographies
Foreword
Nomenclature
Preface
Acknowledgments
About the Companion Website
Chapter 1 Smart Controllers
	1.1 Why is a Power Flow Controller Needed?
	1.2 Traditional Power Flow Control Concepts
	1.3 Modern Power Flow Control Concepts
	1.4 Cost of a Solution
		1.4.1 Defining a Cost-Effective Solution
		1.4.2 Payback Time
		1.4.3 Economic Analysis
	1.5 Independent Active and Reactive PFCs
	1.6 SMART Power Flow Controller (SPFC)
		1.6.1 Example of an SPFC
		1.6.2 Justification
		1.6.3 Additional Information
	1.7 Discussion
Chapter 2 Power Flow Control Concepts
	2.1 Power Flow Equations for a Natural or Uncompensated Line
	2.2 Power Flow Equations for a Compensated Line
		2.2.1 Shunt-Compensating Voltage
			2.2.1.1 Power Flow at the Modified Sending End with a Shunt-Compensating Voltage
			2.2.1.2 Power Flow at the Receiving End with a Shunt-Compensating Voltage
			2.2.1.3 Exchanged Power by a Shunt-Compensating Voltage
			2.2.1.4 Representation of a Shunt-Compensating Voltage as a Shunt-Compensating Impedance
		2.2.2 Series-Compensating Voltage as an Impedance Regulator, Voltage Regulator, and Phase Angle Regulator (Asymmetric)
			2.2.2.1 Power Flow at the Sending End with a Series-Compensating Voltage
			2.2.2.2 Power Flow at the Receiving End with a Series-Compensating Voltage
			2.2.2.3 Power Flow at the Modified Sending End with a Series-Compensating Voltage
			2.2.2.4 Exchanged Power by a Series-Compensating Voltage
			2.2.2.5 Additional Series-Compensating Voltages
				2.2.2.5.1 Phase Angle Regulator (Symmetric)
				2.2.2.5.2 Reactance Regulator
					2.2.2.5.2.1 Reactance Control Method
					2.2.2.5.2.2 Voltage Control Method
			2.2.2.6 Representation of a Series-Compensating Voltage as a Series-Compensating Impedance
				2.2.2.6.1 Equivalent Impedance of a Voltage Regulator (VR)
				2.2.2.6.2 Equivalent Impedance of a Phase Angle Regulator (Asymmetric)
				2.2.2.6.3 Equivalent Impedance of a Phase Angle Regulator (Symmetric)
				2.2.2.6.4 Equivalent Impedance of a Reactance Regulator
		2.2.3 Comparison Between Series- and Shunt-Compensating Voltages
	2.3 Implementation of Power Flow Control Concepts
		2.3.1 Voltage Regulation
			2.3.1.1 Direct Method
			2.3.1.2 Indirect Method
		2.3.2 Phase Angle Regulation
			2.3.2.1 Single-core Phase Angle Regulator
			2.3.2.2 Dual-core Phase Angle Regulator
		2.3.3 Series Reactance Regulation
			2.3.3.1 Direct Method
			2.3.3.2 Indirect Method
		2.3.4 Impedance Regulation
			2.3.4.1 Unified Power Flow Controller (UPFC)
			2.3.4.2 Sen Transformer (ST)
	2.4 Interline Power Flow Concept
		2.4.1 Back-to-Back SSSC
		2.4.2 Multiline Sen Transformer (MST)
		2.4.3 Back-to-Back STATCOM
		2.4.4 Generalized Power Flow Controller
	2.5 Figure of Merits Among Various PFCs
		2.5.1 VR
		2.5.2 PAR (sym)
		2.5.3 PAR (asym)
		2.5.4 RR
		2.5.5 IR
		2.5.6 RPI, LI, and APR of a PFC
	2.6 Comparison Between Shunt-Compensating Reactance and Series-Compensating Reactance
		2.6.1 Shunt-Compensating Reactance
			2.6.1.1 Restoration of Voltage at the Midpoint of the Line
			2.6.1.2 Restoration of Voltage at the One-Third and Two-Third Points of the Line
			2.6.1.3 Restoration of Voltage at the One-Fourth, Half, and Three-Fourth Points of the Line
			2.6.1.4 Restoration of Voltage at n Points of the Line
		2.6.2 Series-Compensating Reactance
	2.7 Calculation of RPI, LI, and APR for a PAR (sym), a PAR (asym), a RR, and an IR in a Lossy Line
		2.7.1 PAR (sym)
		2.7.2 PAR (asym)
		2.7.3 RR
		2.7.4 IR
	2.8 Sen Index of a PFC
Chapter 3 Modeling Principles
	3.1 The Modeling in EMTP
		3.1.1 A Single-Generator/Single-Line Model
		3.1.2 A Two-Generator/Single-Line Model
	3.2 Vector Phase-Locked Loop (VPLL)
	3.3 Transmission Line Steady-State Resistance Calculator
	3.4 Simulation of an Independent PFC, Integrated in a Two-Generator/Single-Line Power System Network
Chapter 4 Transformer-Based Power Flow Controllers
	4.1 Voltage-Regulating Transformer (VRT)
		4.1.1 Voltage Regulating Transformer (Shunt-Series Configuration)
		4.1.2 Two-Winding Transformer
	4.2 Phase Angle Regulator (PAR)
		4.2.1 PAR (Asymmetric)
		4.2.2 PAR (Symmetric)
Chapter 5 Mechanically-Switched Voltage Regulators and Power Flow Controllers
	5.1 Shunt Compensation
		5.1.1 Mechanically-Switched Capacitor (MSC)
		5.1.2 Mechanically-Switched Reactor (MSR)
	5.2 Series Compensation
		5.2.1 Mechanically-Switched Reactor (MSR)
		5.2.2 Mechanically-Switched Capacitor (MSC) with a Reactor
		5.2.3 Series Reactance Emulator
Chapter 6 Sen Transformer
	6.1 Existing Solutions
		6.1.1 Voltage Regulation
		6.1.2 Phase Angle Regulation
	6.2 Desired Solution
		6.2.1 ST as a New Voltage Regulator
		6.2.2 ST as an Independent PFC
		6.2.3 Control of ST
			6.2.3.1 Impedance Emulation
			6.2.3.2 Resistance Emulation
			6.2.3.3 Reactance Emulation
			6.2.3.4 Closed-Loop Power Flow Control
			6.2.3.5 Open-Loop Power Flow Control
		6.2.4 Simulation of ST Integrated in a Two-Generator/One-Line Power System Network
		6.2.5 Simulation of ST Integrated in a Three-Generator/Four-Line Power System Network
		6.2.6 Testing of ST
		6.2.7 Limited-Angle Operation of ST
		6.2.8 ST Using LTCs with Lower Current Rating
		6.2.9 ST with a Two-Core Design
	6.3 Comparison Among the VRT, PAR, UPFC, and ST
		6.3.1 Power Flow Enhancement
		6.3.2 Speed of Operation
		6.3.3 Losses
		6.3.4 Switch Rating
		6.3.5 Magnetic Circuit Design
		6.3.6 Optimization of Transformer Rating
		6.3.7 Harmonic Injection into the Power System Network
		6.3.8 Operation During Line Faults
	6.4 Multiline Sen Transformer
		6.4.1 Basic Differences Between the MST and BTB-SSSC
	6.5 Flexible Operation of the ST
	6.6 ST with a Shunt-Compensating Voltage
	6.7 Limited Angle Operation of the ST with Shunt-Compensating Voltages
	6.8 MST with Shunt-Compensating Voltages
	6.9 Generalized Sen Transformer
	6.10 Summary
Appendix A Miscellaneous
	A.1 Three-Phase Balanced Voltage, Current, and Power
	A.2 Symmetrical Components
	A.3 Separation of Positive-, Negative-, and Zero-Sequence Components in a Multiple Frequency Composite Variable
	A.4 Three-Phase Unbalanced Voltage, Current, and Power
	A.5 d-q Transformation (3-Phase System, Transformed into d-q axes; d-axis Is the Active Component and q-axis Is the Reactive Component)
		A.5.1 Conversion of a Variable Containing Positive-, Negative-, and Zero-Sequence Components into d-q Frame
		A.5.2 Calculation of Instantaneous Power into d-q Frame
		A.5.3 Calculation of Instantaneous Power into d-q Frame for a Three-Phase, Three-Wire System
	A.6 Fourier Analysis
	A.7 Adams-Bashforth Numerical Integration Formula
Appendix B Power Flow Equations in a Lossy Line
	B.1 Power Flow Equations for a Natural or Uncompensated Line
	B.2 Power Flow Equations for a Compensated Line
		B.2.1 Shunt-Compensating Voltage
			B.2.1.1 Power Flow at the Modified Sending End with a Shunt-Compensating Voltage
			B.2.1.2 Power Flow at the Receiving End with a Shunt-Compensating Voltage
			B.2.1.3 Exchanged Power by a Shunt-Compensating Voltage
			B.2.1.4 Representation of a Shunt-Compensating Voltage as a Shunt-Compensating Impedance
		B.2.2 Series-Compensating Voltage as an Impedance Regulator, Voltage Regulator, and Phase Angle Regulator (Asymmetric)
			B.2.2.1 Power Flow at the Sending End with a Series-Compensating Voltage
			B.2.2.2 Power Flow at the Receiving End with a Series-Compensating Voltage
			B.2.2.3 Power Flow at the Modified Sending End with a Series-Compensating Voltage
			B.2.2.4 Exchanged Power by a Series-Compensating Voltage
			B.2.2.5 Additional Series-Compensating Voltages
				B.2.2.5.1 Phase Angle Regulator (Symmetric)
				B.2.2.5.2 Reactance Regulator
			B.2.2.6 Representation of a Series-Compensating Voltage as a Series-Compensating Impedance
				B.2.2.6.1 Equivalent Impedance of a Voltage Regulator (VR)
				B.2.2.6.2 Equivalent Impedance of a Phase Angle Regulator (Asymmetric)
				B.2.2.6.3 Equivalent Impedance of a Phase Angle Regulator (Symmetric)
				B.2.2.6.4 Equivalent Impedance of a Reactance Regulator
			B.2.2.7 RPI, LI, and APR of a PFC
	B.3 Descriptions of the Examples in Chapter
Appendix C Modeling of the Sen Transformer in PSS®E
	C.1 Sen Transformer
	C.2 Modeling with Two Transformers in Series
	C.3 Relating the Sen Transformer with the PSS®E Model
	C.4 Chilean Case Study
	C.5 Limitations – PSS®E Two-Transformer Model
	C.6 Conclusion
Index
EULA




نظرات کاربران