ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Porous Polymer Science and Applications

دانلود کتاب علم و کاربردهای پلیمر متخلخل

Porous Polymer Science and Applications

مشخصات کتاب

Porous Polymer Science and Applications

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 036777058X, 9780367770587 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 276
[277] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Porous Polymer Science and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم و کاربردهای پلیمر متخلخل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب علم و کاربردهای پلیمر متخلخل

هدف

علوم و کاربردهای پلیمر متخلخل ارائه پیشرفت‌ها و پیشرفت‌های اخیر در سنتز، پارامترهای تنظیم، و کاربردهای پلیمرهای متخلخل است. این کتاب بررسی های نوشته شده توسط پانل های بسیار حرفه ای از کارشناسانی را که در زمینه پلیمرهای متخلخل کار می کنند گرد هم می آورد. این شامل مطالعات اساسی است و به موضوعات جدید در مورد کاربردهای پلیمرهای متخلخل می پردازد.

موضوعات فصل شامل مطالعات پایه، مسائل جدید و کاربردهایی است که به همه جنبه ها در یک مرجع یک مرحله ای در مورد پلیمرهای متخلخل می پردازد. کاربردهای مورد بحث شامل بخش‌های کاتالیزور، ذخیره‌سازی گاز، انرژی و محیط‌زیست است که این یک راهنمای ارزشمند برای دانشجویان، اساتید، دانشمندان و کارشناسان صنعتی تحقیق و توسعه است که در زمینه علوم و مهندسی مواد و به‌ویژه تبدیل و ذخیره‌سازی انرژی کار می‌کنند.

ویژگی های اضافی عبارتند از:

  • < span> مقدمه ای جامع برای پلیمرهای متخلخل ارائه می دهد که به طراحی، سنتز، ساختار، خواص و خصوصیات می پردازد.
  • کاربردهای خاص پلیمرهای متخلخل را پوشش می‌دهد.
  • مزایا و فرصت‌های این مواد را برای اکثر زمینه‌های اصلی علم و مهندسی.
  • مناطق تحقیقاتی جدید و مناطق بالقوه توسعه و گسترش را تشریح می‌کند.

توضیحاتی درمورد کتاب به خارجی

Porous Polymer Science and Applications aims to provide recent developments and advances in synthesis, tuning parameters, and applications of porous polymers. This book brings together reviews written by highly accomplished panels of experts working in the area of porous polymers. It encompasses basic studies and addresses topics of novel issues concerning the applications of porous polymers.

Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers. Applications discussed include catalysis, gas storage, energy and environmental sectors making this an invaluable guide for students, professors, scientists and R&D industrial experts working in the field of material science and engineering and particularly energy conversion and storage.

Additional features include:

  • Provides a comprehensive introduction to porous polymers addressing design, synthesis, structure, properties and characterization.
  • Covers task-specific applications of porous polymers.
  • Explores the advantages and opportunities of these materials for most major fields of science and engineering.
  • Outlines novel research areas and potential development and expansion areas.


فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1: Introduction to Porous Polymers
	1.1 Introduction
	1.2 Types of Porous Polymers
	1.3 Synthetic Methods for Porous Polymer Network
	1.4 Conclusion
	References
Chapter 2: Hyper-crosslinked Polymers
	2.1 Introduction
		2.1.1 Overview
		2.1.2 Porous Polymer
		2.1.3 Crosslinking
	2.2 Hyper-crosslinked Polymers
	2.3 Synthesis Methods of HCPs
		2.3.1 Post-crosslinking Polymer Precursors
		2.3.2 Direct One-Step Polycondensation
		2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers
	2.4 Structure and Morphology of HCPs
		2.4.1 Nanoparticles
		2.4.2 Hollow Capsules
		2.4.3 2D Membranes
		2.4.4 Monoliths
	2.5 HCPs Properties
		2.5.1 Polymer Surface
			2.5.1.1 Hydrophilicity
			2.5.1.2 Hydrophobicity
			2.5.1.3 Amphiphilicity
		2.5.2 Porosity and Surface Area
		2.5.3 Swelling Behavior
		2.5.4 Thermomechanical Properties
	2.6 Functionalization of HCPs
	2.7 Characterization of HCPs
		2.7.1 Compositional and Structural Characterization
		2.7.2 Morphological Characterization
		2.7.3 Porosity and Surface Area Analysis
		2.7.4 Other Analysis
	2.8 Applications
		2.8.1 Storage Capacity
			2.8.1.1 Storage of Hydrogen
			2.8.1.2 Storage of Methane
			2.8.1.3 CO 2 Capture
		2.8.2 Environmental Remediation
		2.8.3 Heterogeneous Catalysis
		2.8.4 Drug Delivery
		2.8.5 Sensing
		2.8.6 Other Applications
	2.9 Conclusion
	References
Chapter 3: Porous Ionic Polymers
	3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers
	3.2 Ionic Polymers in Dry State
	3.3 Ionic Polymers in Swollen State: Hsu–Gierke Model
	3.4 Modifications of Hsu–Gierke Model: Hydration of Ion Exchange Polymers
	3.5 Methods for Research of Porous Structure of Ionic Polymers
		3.5.1 Nitrogen Adsorption-Desorption
		3.5.2 Mercury Intrusion
		3.5.3 Adsorption-Desorption of Water Vapor
		3.5.4 Differential Scanning Calorimetry
		3.5.5 Standard Contact Porosimetry
	3.6 Conclusions
	References
Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics
	4.1 Introduction
	4.2 Sorting of Porous Polymers
		4.2.1 Macroporous Polymers
		4.2.2 Microporous Polymers
		4.2.3 Mesoporous Polymers
	4.3 Methodology
		4.3.1 AHP Analysis
	4.4 Conclusions
	References
Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology
	5.1 Background
	5.2 Porous Polymers Based on Natural Polysaccharides
	5.3 Parameters Involved in the Porous Polymers Processing by High Pressure
	5.4 Supercritical Fluid Drying for Porous Polymers Processing
	5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology
	5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging
	5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating
	5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid
	5.9 Porous Metal–Organic Frameworks Polymers by Supercritical Fluid Processing
	5.10 Concluding Remarks
	Acknowledgments
	References
Chapter 6: Porous Polymer for Heterogeneous Catalysis
	6.1 Introduction
	6.2 Stability and Functionalization of POPs
	6.3 Strategies for Synthesizing POP Catalyst
		6.3.1 Co-polymerization
			6.3.1.1 Acidic and Basic Groups
			6.3.1.2 Ionic Groups
			6.3.1.3 Ligand Groups
			6.3.1.4 Chiral Groups
			6.3.1.5 Porphyrin Group
		6.3.2 Self-polymerization
			6.3.2.1 Organic Ligand Groups
			6.3.2.2 Organocatalyst Groups
			6.3.2.3 Ionic Groups
			6.3.2.4 Chiral Ligand Groups
			6.3.2.5 Porphyrin Groups
	6.4 Applications of Various Porous Polymers
		6.4.1 CO 2 Capture and Utilization
			6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP
				6.4.1.1.1 Mechanism of the Cycloaddition Reaction
			6.4.1.2 Triphenylphosphine-based POP
		6.4.2 Energy Storage
		6.4.3 Heterogeneous Catalysis
			6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction
			6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins
			6.4.3.3 Ni(II)-metallated POP for Suzuki–Miyaura Crosscoupling Reaction
			6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2
			6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols
				6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs
		6.4.4 Photocatalysis
			6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units
			6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst
			6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles
				6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst
				6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole
		6.4.5 Electrocatalysis
			6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR)
	References
Chapter 7: Triazine Porous Frameworks
	7.1 Introduction
	7.2 Synthetic Procedures of CTFs and Their Structural Designs
		7.2.1 Ionothermal Trimerization Strategy
		7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method
		7.2.3 Amidine-based Polycondensation Methods
		7.2.4 Superacid Catalyzed Method
		7.2.5 Friedel–Crafts Reaction Method
	7.3 Applications of CTFs
		7.3.1 Adsorption and Separation
			7.3.1.1 CO 2 Capture and Separation
			7.3.1.2 The Removal of Pollutants
		7.3.2 Heterogeneous Catalysis
		7.3.3 Applications for Energy Storage and Conversion
			7.3.3.1 Metal-Ion Batteries
			7.3.3.2 Supercapacitors
		7.3.4 Electrocatalysis
		7.3.5 Photocatalysis
		7.3.6 Other Applications of CTFs
	References
Chapter 8: Advanced Separation Applications of Porous Polymers
	8.1 Introduction
	8.2 Advanced Separation Applications
	8.3 Separation through Adsorption
	8.4 Water Treatment
	8.5 Conclusion
	Abbreviations
	References
Chapter 9: Porous Polymers for Membrane Applications
	9.1 Introduction
	9.2 Introduction to Synthesis of Porous Polymeric Particles
	9.3 Preparation of Porous Polymeric Membrane
	9.4 Morphology of Membrane and Its Parameters
	9.5 Emerging Applications of Porous Polymer Membranes
	9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application
		9.6.1 Polysulfone Membranes
		9.6.2 Polyvinylidene Fluoride Membranes
	9.7 Use of Porous Polymeric Membranes for Sensing Application
	9.8 Use of Porous Polymeric Electrolytic Membranes Application
	9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization
	9.10 Use of Porous Polymers for Biomedical Application
	9.11 Use of Porous Polymeric Membrane in Tissue Engineering
	9.12 Use of Porous Polymeric Membrane in Wastewater Treatment
	9.13 Use of Porous Polymeric Membrane for Dye Rejection Application
	9.14 Porous Polymeric Membrane Antifouling Application
	9.15 Porous Polymeric Membrane Used for Fuel Cell Application
	9.16 Conclusion
	References
Chapter 10: Porous Polymers in Solar Cells
	10.1 Introduction
		10.1.1 Si-based Solar Cells
		10.1.2 Thin-film Solar Cells
		10.1.3 Organic Solar Cells
	10.2 Porous Polymers in DSSCs
		10.2.1 Porous Polymers in Electrodes
		10.2.2 Porous Polymer as a Counter Electrode
		10.2.3 Porous Polymers in TiO 2 Photoanode
		10.2.4 Porous Polymers in Electrolyte
		10.2.5 Porous Polymer as Energy Conversion Film
			10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes
			10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs)
		10.2.6 Porous Polymers in Coating of Solar Cell
		10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst
	10.3 Perovskite Solar Cells
		10.3.1 Porous Polymers in Electron Transport Layers
		10.3.2 Porous Polymers in Hole Transport Layers
		10.3.3 Porous Polymer as Energy Conversion Film
		10.3.4 Porous Polymers as Interlayers
		10.3.5 Porous Polymers in Morphology Regulations
	10.4 Porous Polymers in Silicon Solar Cell
	10.5 Miscellaneous
		10.5.1 Porous Polymers in Solar Evaporators
		10.5.2 Charge Separation Systems in Solar Cells
		10.5.3 Porous Polymers in ZnO Photoanode
	10.6 Conclusions
	References
Chapter 11: Porous Polymers for Hydrogen Production
	11.1 Introduction
		11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs)
			11.1.1.1 Infiltration
			11.1.1.2 Layer-by-Layer Assembly (LbL)
			11.1.1.3 Conventional Polymerization
			11.1.1.4 Electrochemical Polymerization
			11.1.1.5 Controlled/Living Polymerization (CLP)
			11.1.1.6 Macromolecular Design
			11.1.1.7 Self-assembly
			11.1.1.8 Phase Separation
			11.1.1.9 Solid and Liquid Templating
			11.1.1.10 Foaming
	11.2 Various Porous Polymers for H 2 Production
		11.2.1 Photocatalysts Based on Conjugated Microporous Polymers
		11.2.2 Conjugated Microporous Polymers
		11.2.3 Porous Conjugated Polymer (PCP)
		11.2.4 Membrane Reactor
		11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure
		11.2.6 Porous Organic Polymers (POPs)
		11.2.7 PEM Water Electrolysis
		11.2.8 Microporous Inorganic Membranes
		11.2.9 Hybrid Porous Solids for Hydrogen Evolution
	11.3 Other Alternatives for Hydrogen Production
		11.3.1 Metal–Organic Frameworks (MOFs)
		11.3.2 Covalent Organic Frameworks
		11.3.3 Photochemical Device
		11.3.4 Conjugated Polymer Dots (Pdots)
	11.4 Preparation Technology and Post-processing
	11.5 Material Cost and Energy Source
	11.6 Application of Porous Polymers
	11.7 Advantage and Limitations
		11.7.1 Advantage
		11.7.2 Limitations
	11.8 Challenges and Future Outlooks
	11.9 Conclusions
	References
Chapter 12: Porous Polymers in Photocatalysis
	12.1 Introduction
	12.2 Photocatalysis
	12.3 Mechanism of Action
	12.4 Porous Polymer Catalyzed Light Induced Organic Transformations
		12.4.1 Polycarbazole
		12.4.2 Benzimidazole, Benzoxazole, and Benzothiazole
		12.4.3 Xanthene
		12.4.4 Porphyrin
	12.5 Conclusion
	References
Chapter 13: Porous Polymers for CO 2 Reduction
	13.1 Introduction
	13.2 Role of CO 2 in Climate Change
	13.3 Mitigation Strategies of CO 2
	13.4 Technologies for CO 2 Capture
		13.4.1 Post-combustion Process
		13.4.2 Pre-combustion Process
		13.4.3 Oxy-fuel Combustion
		13.4.4 Chemical Looping Combustion
	13.5 Porous Organic Polymers
		13.5.1 Covalent Organic Frameworks (COFs)
		13.5.2 Covalent Triazine Frameworks
		13.5.3 Polymers of Intrinsic Microporosity
		13.5.4 Porous Aromatic Frameworks
		13.5.5 Hyper-Crosslinked Polymers
		13.5.6 Conjugated Microporous Polymers
	13.6 Factors Affecting the CO 2 Uptake
		13.6.1 Surface Area
		13.6.2 Functionalization of Pore Size
		13.6.3 Swellable Polymers
		13.6.4 Heteroatomic Skeleton
		13.6.5 Surface Functionalized POPs
			13.6.5.1 Organic Functional Groups
			13.6.5.2 Inorganic Ions
	13.7 Selectivity of CO 2
	13.8 Conclusion and Prospects
	References
Chapter 14: Antibacterial Applications of Porous Polymers
	14.1 Introduction
	14.2 Development of Porous Polymers with Antimicrobial Potential
		14.2.1 Direct Modeling Methodology
		14.2.2 Direct Synthesis Methodologies
		14.2.3 Block Copolymer Self-assembly Methodologies
	14.3 Some Porous Biodegradable and Biocompatible Polymers for Antimicrobial Applications
		14.3.1 Polymeric Aerogels, Bioaerogels, and Polymeric Foams
		14.3.2 Polymeric Aerogels, Bioaerogels, and Bio-based Polymeric Foams are Biocompatible and non-Toxic
	14.4 Applications of Porous Antimicrobial Polymers in the Food Industry
	14.5 Applications of Porous Antimicrobial Polymers in the Pharmaceutical Industry
	14.6 Conclusions
	Conflict of Interest
	Acknowledgment
	References
Index




نظرات کاربران