ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymer science and innovative applications materials, techniques, and future developments

دانلود کتاب علم پلیمر و کاربردهای نوآورانه مواد، تکنیک ها و پیشرفت های آینده

Polymer science and innovative applications materials, techniques, and future developments

مشخصات کتاب

Polymer science and innovative applications materials, techniques, and future developments

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780128173039, 0128173033 
ناشر: Elsevier 
سال نشر: 2020 
تعداد صفحات: [665] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Polymer science and innovative applications materials, techniques, and future developments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم پلیمر و کاربردهای نوآورانه مواد، تکنیک ها و پیشرفت های آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Polymer Science and Innovative Applications
Copyright
Contents
List of contributors
1 Polymers to improve the world and lifestyle: physical, mechanical, and chemical needs
	1.1 Introduction
	1.2 Industrial revolutions and polymer applications
	1.3 Polymers: general classification and production
		1.3.1 Fabrication methods
		1.3.2 Classification of polymers
			1.3.2.1 Thermoplastics
			1.3.2.2 Thermosets
			1.3.2.3 Elastomers (rubbers)
	1.4 Current lifestyle and the need of polymers
	1.5 Polymers to composites
	1.6 Specific requirements of polymers using physical, mechanical, and chemical methods
	1.7 Internet of Things and smart materials
	1.8 Conclusions
	Acknowledgments
	References
2 Morphology analysis
	2.1 Introduction
	2.2 Polymer morphology
		2.2.1 Crystalline polymers
		2.2.2 Amorphous polymers
		2.2.3 Semicrystalline polymers
		2.2.4 Polymer blends
		2.2.5 Polymer composites
	2.3 Characterization methods
		2.3.1 Indirect observation methods
			2.3.1.1 X-ray diffraction
			2.3.1.2 Small angle light scattering
			2.3.1.3 Small angle X-ray scattering
			2.3.1.4 Differential scanning calorimetry
			2.3.1.5 Dynamic mechanical analysis
		2.3.2 Direct observation methods
			2.3.2.1 Optical microscopy
			2.3.2.2 Scanning electron microscopy
			2.3.2.3 Transmission electron microscopy
			2.3.2.4 Scanning tunneling microscopy
		2.3.2.5 Atomic force microscopy
	2.4 Applications
	2.5 Conclusion
	Acknowledgments
	References
3 Chemical analysis of polymers
	3.1 Introduction
	3.2 Molecular weight determination
		3.2.1 Determination of molecular weight by end group analysis
			3.2.1.1 Chemical analysis of amine, carboxyl and hydroxyl groups
		3.2.2 Determination of number average molecular weight by end group analysis
	3.3 Infrared spectroscopy
		3.3.1 Infrared analysis of saturated polymers
		3.3.2 Infrared analysis of polymers containing unsaturation
		3.3.3 Infrared analysis of polymers containing aromatic group
		3.3.4 Infrared analysis of polymers containing hydroxyl group
		3.3.5 Infrared analysis of polymers containing ester group
		3.3.6 Infrared analysis of polymers containing carboxylic acid group
		3.3.7 Infrared analysis of polymers containing amide group
	3.4 Nuclear magnetic resonance spectroscopy
		3.4.1 Nuclear Zeeman splitting
		3.4.2 Chemical shift
		3.4.3 Spin–spin coupling
		3.4.4 Analysis of end groups by 1H nuclear magnetic resonance spectroscopy
		3.4.5 Determination of molecular weight by 1H nuclear magnetic resonance spectroscopy
		3.4.6 Copolymer analysis by 1H nuclear magnetic resonance spectroscopy
	3.5 Mass spectrometry
		3.5.1 Electrospray ionization mass spectrometry
		3.5.2 Matrix-assisted laser desorption/ionization mass spectrometry
		3.5.3 Applications of electrospray ionization and matrix-assisted laser desorption/ionization spectrometry
	3.6 Conclusion
	Acknowledgments
	References
4 Mechanical analysis of polymers
	4.1 Introduction
	4.2 Mechanical properties of polymers
		4.2.1 Stress–strain behavior
		4.2.2 Viscoelasticity
		4.2.3 Time–temperature dependence
		4.2.4 Tensile strength
		4.2.5 Flexural modulus (modulus of elasticity)
		4.2.6 Elongation at break
		4.2.7 Crazing and shear yielding
		4.2.8 Fracture and fracture mechanics
		4.2.9 Coefficient of friction
		4.2.10 Fatigue and fatigue crack propagation
		4.2.11 Toughness
		4.2.12 Abrasion resistance
	4.3 Dynamic mechanical thermal analysis of polymers
	4.4 Factors affecting the mechanical properties of polymers
		4.4.1 Molecular weight
		4.4.2 Degree of crystallinity
		4.4.3 Temperature
		4.4.4 Processing methods
	4.5 Conclusion
	References
5 Physical and thermal analysis of polymer
	5.1 Introduction
	Techniques used for physical and thermal analysis of polymers
		5.1.1 Infrared and Raman spectroscopy
			5.1.1.1 Basic principle
			5.1.1.2 Applications
		5.1.2 Nuclear magnetic resonance spectroscopy
			5.1.2.1 Basic principle
			5.1.2.2 Applications
		5.1.3 X-ray analysis
			5.1.3.1 Basic principle
			5.1.3.2 Applications
		5.1.4 Scanning electron microscopy and transmission electron microscopy
			5.1.4.1 Basic principle
			5.1.4.2 Applications
		5.1.5 Thermogravimetry and differential scanning calorimetry
			5.1.5.1 Basic principle
			5.1.5.2 Applications
				5.1.5.2.1 Thermogravimetry applications
				5.1.5.2.2 Differential thermal analysis and differential scanning calorimetry applications
		5.1.6 Quantum chemical calculations
			5.1.6.1 Basic principle
			5.1.6.2 Applications
		5.1.7 Gas permeation behavior
	5.2 Conclusion
	Acknowledgment
	References
6 Theoretical simulation approaches to polymer research
	6.1 Introduction
	6.2 Methodologies and applications
		6.2.1 Molecular dynamics simulations
		6.2.2 Dissipative particle dynamics simulations
		6.2.3 Molecular theory
	6.3 Conclusion
	References
7 An example of theoretical approaches in polymer hydrogels: insights into the behavior of pH-responsive nanofilms
	7.1 Introduction
	7.2 Acid–base equilibrium in dilute solutions: ideal behavior
	7.3 Protonation of weak polyacid hydrogel films
		7.3.1 Local pH
		7.3.2 Displacement of chemical equilibrium: the role of salt concentration
	7.4 Histidine-tag adsorption to pH-responsive hydrogels
		7.4.1 Adsorption is a nonmonotonic function of pH
		7.4.2 Adsorption can modify the pH inside the hydrogel
	7.5 Adsorption of proteins to pH-sensitive hydrogels
		7.5.1 Protein model and solution titration curves
		7.5.2 The role of pH and salt concentration in the magnitude of adsorption
		7.5.3 Protein charge regulation
		7.5.4 Protonation of amino acids after adsorption
		7.5.5 Adsorption from binary protein mixtures
	7.6 Conclusion
	Acknowledgment
	References
8 Pectin as oral colon-specific nano- and microparticulate drug carriers
	8.1 Introduction
		8.1.1 Synthetic polymers
		8.1.2 Natural polymer
	8.2 Pectin as bioactive dietary fiber
		8.2.1 Prebiotic
		8.2.2 Antibacterial
		8.2.3 Antioxidant
		8.2.4 Antidiabetic
		8.2.5 Antitumor
	8.3 Pectin-based oral drug delivery system
		8.3.1 Tablet
		8.3.2 Beads
		8.3.3 Pellets
		8.3.4 Nanoparticles
	8.4 Oral colon-specific drug delivery mechanism
	8.5 Conclusion
	References
9 Starch as oral colon-specific nano- and microparticulate drug carriers
	9.1 Introduction
	9.2 Polysaccharides as anticancer drug carriers
	9.3 Colon anatomy and physiology
	9.4 Colon cancer
		9.4.1 Colon cancer statistics
		9.4.2 Treatment modes, their disadvantages, and limitations
	9.5 Colon-specific drug delivery
	9.6 Starch as a drug carrier
		9.6.1 Physicochemical properties of starch
		9.6.2 Resistant starch
		9.6.3 Preparations of resistant starch
			9.6.3.1 Acetylation
			9.6.3.2 Acid hydrolysis
			9.6.3.3 Amylose–lipid complexation
			9.6.3.4 Crosslinking
			9.6.3.5 Enzymatic debranching
			9.6.3.6 Hydrothermal treatment
		9.6.4 Pharmaceutical applications of starch
		9.6.5 Starch as oral colon-specific drug carrier
			9.6.5.1 Beads
			9.6.5.2 Hydrogels
			9.6.5.3 Microparticles
			9.6.5.4 Nanoparticles
			9.6.5.5 Pellets
	9.7 Conclusion
	Acknowledgment
	References
10 Polymers in textiles
	10.1 Introduction
	10.2 Brief history of manmade fibers
	10.3 Terminology and definitions
	10.4 Fiber manufacturing
		10.4.1 Melt spinning
		10.4.2 Dry spinning
		10.4.3 Wet spinning
		10.4.4 Gel spinning
		10.4.5 Nonwovens processing
	10.5 Characterization and testing of textile fibers
		10.5.1 Density
		10.5.2 Mechanical properties
			10.5.2.1 Tenacity
			10.5.2.2 Elongation to break
		10.5.3 Fiber structure and morphology
		10.5.4 Fiber identification
			10.5.4.1 Microscopy test
			10.5.4.2 Chemical test
			10.5.4.3 Burn test
			10.5.4.4 Density test
			10.5.4.5 Stain test
		10.5.5 Other characterization and identification techniques
	10.6 Polymers in textiles: major manmade fibers
		10.6.1 Polyester
			10.6.1.1 Chemistry
			10.6.1.2 Properties
			10.6.1.3 Uses
		10.6.2 Nylon
			10.6.2.1 Chemistry
			10.6.2.2 Properties
			10.6.2.3 Uses
		10.6.3 Acetate fiber
			10.6.3.1 Chemistry
			10.6.3.2 Properties
			10.6.3.3 Uses
		10.6.4 Acrylic fiber
			10.6.4.1 Chemistry
			10.6.4.2 Properties
			10.6.4.3 Uses
		10.6.5 Modacrylic fiber
			10.6.5.1 Chemistry
			10.6.5.2 Properties
			10.6.5.3 Uses
		10.6.6 Spandex fiber
			10.6.6.1 Chemistry
			10.6.6.2 Properties
			10.6.6.3 Uses
		10.6.7 High-performance fibers
			10.6.7.1 Aramids (Nomex and Kevlar)
				10.6.7.1.1 Chemistry
				10.6.7.1.2 Properties
				10.6.7.1.3 Uses
			10.6.7.2 Ultrahigh molecular weight polyethylene
				10.6.7.2.1 Chemistry
				10.6.7.2.2 Properties
				10.6.7.2.3 Uses
			10.6.7.3 Carbon fiber
				10.6.7.3.1 Chemistry
				10.6.7.3.2 Properties
				10.6.7.3.3 Uses
		10.6.8 Polyolefins
			10.6.8.1 Chemistry
			10.6.8.2 Properties
			10.6.8.3 Uses
	10.7 Conclusion
	References
11 Polymers in electronics
	11.1 Introduction
	11.2 Type of polymers
		11.2.1 Conducting polymers
			11.2.1.1 Traditional sequences of conducting polymer
			11.2.1.2 Features of conducting polymers
			11.2.1.3 Structure of conducting polymers
			11.2.1.4 Advantages of conducting polymers
		11.2.2 Semiconducting polymers
			11.2.2.1 Filled polymers
			11.2.2.2 Ionic polymers or ionomers
			11.2.2.3 Charge transfer polymers
			11.2.2.4 Conjugated conducting polymers
				11.2.2.4.1 Charge transport polymer
	11.3 Applications of semiconducting polymers
		11.3.1 Fuel cells
		11.3.2 Piezoelectric materials
		11.3.3 Optoelectronics
		11.3.4 Flexible electronics
		11.3.5 Printable electronics
		11.3.6 Dielectrics
		11.3.7 Sensors
			11.3.7.1 Temperature sensors
			11.3.7.2 pH sensors
			11.3.7.3 Gas sensors
			11.3.7.4 Ion-selective sensors
			11.3.7.5 Stress sensors
			11.3.7.6 Biosensors
			11.3.7.7 Multisensors
	11.4 Conclusion
	Acknowledgment
	References
12 Polymers in robotics
	12.1 Introduction
		12.1.1 Robotics: the term, the idea
		12.1.2 History of robots
		12.1.3 Classification of robots
			12.1.3.1 Degrees of freedom
			12.1.3.2 Kinematic structure
			12.1.3.3 Drive technology
			12.1.3.4 Workspace geometry
			12.1.3.5 Motion characteristics
			12.1.3.6 Applications
		12.1.4 Components of robots
			12.1.4.1 Mechanical platform
			12.1.4.2 Sensors
			12.1.4.3 Motors
			12.1.4.4 Power supply
			12.1.4.5 Electronic controls
			12.1.4.6 Microcontroller systems
			12.1.4.7 Languages
			12.1.4.8 Pneumatics
			12.1.4.9 Driving high-current loads from logic controllers
	12.2 Role of polymers in robotics
		12.2.1 Types of polymers used in robotics
			12.2.1.1 Electroactive materials
				12.2.1.1.1 Mechanism of electroactive polymers
			12.2.1.2 Electronic electroactive polymers
				12.2.1.2.1 Piezoelectric polymers
				12.2.1.2.2 Electro-strictive polymers
				12.2.1.2.3 Dielectric elastomeric actuators
				12.2.1.2.4 Liquid crystal elastomers
				12.2.1.2.5 Ferroelectric polymers
			12.2.1.3 Ionic electroactive polymers
				12.2.1.3.1 Ionic polymer–metal composites
				12.2.1.3.2 Carbon nanotubes
				12.2.1.3.3 Ionic polymer gels
				12.2.1.3.4 Conductive polymers
				12.2.1.3.5 Electrorheological fluids
			12.2.1.4 Thermoplastics in robotics
			12.2.1.5 Epoxy-based materials in robotics
		12.2.2 Composites in robotics
		12.2.3 Polymeric sensors
	12.3 Applications of robotics
		12.3.1 Terrestrial applications
		12.3.2 Medical sector
		12.3.3 Industrial sector
		12.3.4 Miscellaneous applications
		12.3.5 Space applications
		12.3.6 Underwater applications
		12.3.7 Military applications
		12.3.8 In mining
	12.4 Conclusion
	References
13 Polymers in optics
	13.1 Introduction
	13.2 Properties of optical polymers
		13.2.1 Refractive index
		13.2.2 Abbe number (V number)
		13.2.3 Birefringence
		13.2.4 Transparency
		13.2.5 Color
		13.2.6 Gloss
	13.3 Characterization of optical properties of polymers
		13.3.1 Abbe refractometer
		13.3.2 UV–visible absorption spectroscopy
		13.3.3 Photoluminescence spectroscopy
		13.3.4 Raman spectroscopy
		13.3.5 Brillouin spectroscopy
	13.4 Polymer optics: the manufacturing technology
	13.5 Applications of polymers in optics
		13.5.1 Polymers in fiber optics
		13.5.2 Polymers in optical lenses
		13.5.3 Polymers in lasers
		13.5.4 Polymers in optical sensors
		13.5.5 Polymers in waveguide fabrication
		13.5.6 Polymers in nonlinear optics
		13.5.7 Polymers in solar cells
		13.5.8 Polymers in photocatalysis
		13.5.9 Polymer optics in the biomedical field
	13.6 Future perspective and challenges in polymer optics
	13.7 Conclusion
	Acknowledgments
	References
14 Polymers in space exploration and commercialization
	14.1 Introduction
	14.2 Space environments, actions, and conditions
	14.3 Effect of space environment on polymers
		14.3.1 Vacuum
		14.3.2 Thermal cycling
		14.3.3 Atomic oxygen
		14.3.4 Ionizing radiation
		14.3.5 Solar ultraviolet radiation
	14.4 Use of inorganic polymers as building materials
	14.5 Space resources
		14.5.1 Materials from space resources
	14.6 Use of polymers in space
		14.6.1 Inflatable bases
		14.6.2 Construction materials
			14.6.2.1 Polymer concrete
			14.6.2.2 Geopolymer concrete
			14.6.2.3 Advanced polymer-based materials
	14.7 Research needs and future directions
		14.7.1 Utilizing robotics
		14.7.2 Processing and printing of polymers in space
		14.7.3 Flexible and energy harvesting polymers
	14.8 Novel polymers
	14.9 Conclusion
	References
15 Polymers in sports
	15.1 Introduction
	15.2 Materials used in sports
	15.3 Evolution of materials used in sports from traditional to composites
		15.3.1 Wood
		15.3.2 Metals
		15.3.3 Composite materials
	15.4 Common polymers in sports
		15.4.1 Cyanoacrylate
		15.4.2 Vectran
		15.4.3 Gutta-percha
		15.4.4 trans-1,4-Polyisoprene
		15.4.5 Surlyn copolymer
		15.4.6 Polycarbonate
		15.4.7 Epoxy resin
		15.4.8 Polyurethane
		15.4.9 Acrylonitrile–butadiene–styrene
		15.4.10 Polyvinyl chloride
		15.4.11 Poly(ethylene-vinyl acetate)
		15.4.12 Carbon fiber–reinforced polymer
		15.4.13 Soft and hard polyethene
		15.4.14 Polymeric foams
		15.4.15 Neoprene
		15.4.16 Polydimethylsiloxane
		15.4.17 Nylon
		15.4.18 Polyamides
		15.4.19 Polyolefins
	15.5 Polymers in winter sports
		15.5.1 Skiing
		15.5.2 Ice hockey
	15.6 Polymeric sports surfaces
	15.7 Polymers in sports protection equipment
		15.7.1 Protection for the mouth
		15.7.2 Protection for the head
		15.7.3 Protection for the shoulders
		15.7.4 Protection for the hands
	15.8 Polymers in tennis
		15.8.1 Nylon string
		15.8.2 Polyester string
		15.8.3 Kevlar string
		15.8.4 Natural gut string
	15.9 Polymers in athletics and gymnastics
	15.10 Polymers in golf
	15.11 Polymers in pole vaulting
	15.12 Polymers in water sports
	15.13 Polymers in motor sports
	15.14 Polymers in cycling
	15.15 Polymers in sportswear
		15.15.1 Thermal properties of sportswear
		15.15.2 Golf attire
	15.16 Polymers in sports footwear
	15.17 Conclusion
	References
16 Polymers and food packaging
	16.1 Introduction
	16.2 Food packaging
	16.3 Packaging materials
		16.3.1 Polymers
		16.3.2 Biodegradable polymers
		16.3.3 Synthetic polymers and biopolymers hybrids
		16.3.4 Nanomaterials
	16.4 Some methods for biopolymers production
	16.5 Biopolymers and active packaging
	16.6 Conclusion
	References
17 Polymers in cosmetics
	17.1 Introduction
	17.2 Understanding polymer/surfactant interactions
	17.3 Use of polymers in cosmetics
		17.3.1 Synthetic polymers
			17.3.1.1 Thickening by chain entanglement
			17.3.1.2 Thickening by covalent cross-linking
			17.3.1.3 Thickening by an associative mechanism
		17.3.2 Polysaccharide-based polymers
			17.3.2.1 Anionic polysaccharides
			17.3.2.2 Cationic polysaccharides
			17.3.2.3 Nonionic polysaccharides
			17.3.2.4 Amphoteric polysaccharides
		17.3.3 Proteins
			17.3.3.1 Proteins in skin care
			17.3.3.2 Proteins in hair care
			17.3.3.3 Proteins in cleansing products
		17.3.4 Silicones
			17.3.4.1 Cyclomethicones
			17.3.4.2 Dimethicone
			17.3.4.3 Amodimethicone
			17.3.4.4 Alkyl-modified silicones
		17.3.5 Examples and case studies
			17.3.5.1 Lather enhancer cellulose in personal care
			17.3.5.2 Polymers in hair care
			17.3.5.3 Application of acetylene-derived polymers for personal care
			17.3.5.4 Cosmetic use of chitin and chitosan
	17.4 Conclusion
	References
	Further reading
18 Polymers in food
	18.1 Introduction
	18.2 Classification of food polymers
		18.2.1 Polysaccharides
			18.2.1.1 Food storage polysaccharides
			18.2.1.2 Structural polysaccharides
			18.2.1.3 Mucosubstances
		18.2.2 Polypeptides
		18.2.3 Lipids
		18.2.4 Synthetic and composite food polymers
	18.3 Conclusion
	References
	Further reading
19 Future needs and trends: influence of polymers on the environment
	19.1 Introduction
		19.1.1 The structure and properties of polymers
			19.1.1.1 The structure of polymers
			19.1.1.2 Molecular arrangement of polymers
			19.1.1.3 Characteristics of polymers
			19.1.1.4 Mechanical and thermal stabilities of polymers
		19.1.2 Inspiration of polymers in daily life
		19.1.3 Polymer uses in modern life
	19.2 Polymers in the environment
		19.2.1 Polymers and their impacts in society: a general view
		19.2.2 Overview of environmental and societal applications of polymers
			19.2.2.1 Polypropylene
			19.2.2.2 Polyurethane
			19.2.2.3 Polyvinyl chloride
			19.2.2.4 Acrylonitrile butadiene
			19.2.2.5 Polyamide
	19.3 Polymer-based materials as a new direction for environmental remediations
		19.3.1 Carbon-based polymeric composite materials for CO2 capture
		19.3.2 Polymer-based membranes
		19.3.3 Magnetic polymer composites
		19.3.4 Ionic liquid based polymeric composites
	19.4 Polymer-based materials for societal applications
		19.4.1 Polymers-based materials for agriculture and horticulture
		19.4.2 Polymer-based materials for packaging materials
		19.4.3 Polymeric materials for hydrogen storage purpose
		19.4.4 Polymer-based materials for corrosion control
		19.4.5 Polymer-based materials for medical and biomedical applications
	19.5 Polymers: recent trends, strategic changes, economic and market demands
		19.5.1 Economic development of polymeric products
	19.6 Polymers: future impacts on energy and solar cells
	19.7 Consequences of the nonbiodegradable polymers derived from renewable resources
	19.8 Recyclability, biodegradability, and reusability of polymeric products
	19.9 Polymeric products disposal ways and its impacts
	19.10 Waste to wealth future perspectives of ecofriendly polymer materials development and usage
	19.11 Conclusion
	Acknowledgment
	References
Index




نظرات کاربران