ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Polymer Chemistry

دانلود کتاب شیمی پلیمر

Polymer Chemistry

مشخصات کتاب

Polymer Chemistry

ویرایش: [Third Edition] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781466581647, 9780429190810 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: [676] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Polymer Chemistry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شیمی پلیمر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Preface to the Third Edition
Chapter 1: Introduction to Chain Molecules
	1.1. Introduction
	1.2. How Big is Big?
		1.2.1. Molecular Weight
		1.2.2. Spatial Extent
	1.3. Linear and Branched Polymers, Homopolymers, and Copolymers
		1.3.1. Branched Structures
		1.3.2. Copolymers
	1.4. Addition, Condensation, and Naturally Occurring Polymers
		1.4.1. Addition and Condensation Polymers
		1.4.2. Natural Polymers
	1.5. Polymer Nomenclature
	1.6. Structural Isomerism
		1.6.1. Positional Isomerism
		1.6.2. Stereo Isomerism
		1.6.3. Geometrical Isomerism
	1.7. Molecular Weights and Molecular Weight Averages
		1.7.1. Number-, Weight-, and z-Average Molecular Weights
		1.7.2. Dispersity and Standard Deviation
		1.7.3. Examples of Distributions
	1.8. Measurement of Molecular Weight
		1.8.1. General Considerations
		1.8.2. End Group Analysis
		1.8.3. MALDI Mass Spectrometry
	1.9. Preview of Things to Come
	1.10. Chapter Summary
	Problems
	References
	Further Readings
Chapter 2: Step-Growth Polymerization
	2.1. Introduction
	2.2. Condensation Polymers: One Step at a Time
		2.2.1. Classes of Step-Growth Polymers
		2.2.2. A First Look at the Distribution of Products
		2.2.3. A First Look at Reactivity and Reaction Rates
	2.3. Kinetics of Step-Growth Polymerization
		2.3.1. Catalyzed Step-Growth Reactions
		2.3.2. How Should Experimental Data Be Compared with Theoretical Rate Laws?
		2.3.3. Uncatalyzed Step-Growth Reactions
	2.4. Distribution of Molecular Sizes
		2.4.1. Mole Fractions of Species
		2.4.2. Weight Fractions of Species
	2.5. Polyesters
	2.6. Polyamides
	2.7. Other Examples of Important Step-growth Polymers
		2.7.1. Polycarbonates
		2.7.2. Polyimides
		2.7.3. Polyurethanes
		2.7.4. Polysiloxanes
		2.7.5. Polythiophenes
	2.8. Stoichiometric Imbalance
	2.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 3: Chain-Growth Polymerization
	3.1. Introduction
	3.2. Chain-Growth and Step-Growth Polymerizations: Some Comparisons
	3.3. Initiation
		3.3.1. Initiation Reactions
		3.3.2. Fate of Free Radicals
		3.3.3. Kinetics of Initiation
		3.3.4. Temperature Dependence of Initiation Rates
	3.4. Termination
		3.4.1. Combination and Disproportionation
		3.4.2. Effect of Termination on Conversion to Polymer
		3.4.3. Steady-State Radical Concentration
	3.5. Propagation
		3.5.1. Rate Laws for Propagation
		3.5.2. Temperature Dependence of Propagation Rates
		3.5.3. Kinetic Chain Length
	3.6. Radical Lifetime
	3.7. Distribution of Molecular Weights
		3.7.1. Distribution of i-mers: Termination
by Disproportionation
		3.7.2. Distribution of i-mers: Termination by Combination
	3.8. Chain Transfer
		3.8.1. Chain Transfer Reactions
		3.8.2. Evaluation of Chain Transfer Constants
		3.8.3. Chain Transfer to Polymer
		3.8.4. Suppressing Polymerization
	3.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 4: Controlled Polymerization
	4.1. Introduction
	4.2. Poisson Distribution for an Ideal Living Polymerization
		4.2.1. Kinetic Scheme
		4.2.2. Breadth of the Poisson Distribution
	4.3. Anionic Polymerization
	4.4. Block Copolymers, End-Functional Polymers, and Branched Polymers by Anionic Polymerization
		4.4.1. Block Copolymers
		4.4.2. End-Functional Polymers
		4.4.3. Regular Branched Architectures
	4.5. Cationic Polymerization
		4.5.1. Aspects of Cationic Polymerization
		4.5.2. Living Cationic Polymerization
	4.6. Controlled Radical Polymerization
		4.6.1. General Principles of Controlled Radical Polymerization
		4.6.2. Particular Realizations of Controlled Radical Polymerization
			4.6.2.1. Atom Transfer Radical Polymerization (ATRP)
			4.6.2.2. Stable Free-Radical Polymerization (SFRP)
			4.6.2.3. Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization
	4.7. Polymerization Equilibrium
	4.8. Ring-Opening Polymerization (ROP)
		4.8.1. General Aspects
		4.8.2. Specific Examples of Living Ring-Opening Polymerizations
			4.8.2.1. Poly(ethylene oxide)
			4.8.2.2. Polylactide
			4.8.2.3. Poly(dimethylsiloxane)
			4.8.2.4. Ring-Opening Metathesis Polymerization (ROMP)
	4.9. Dendrimers
	4.10. Chapter Summary
	Problems
	References
	Further Readings
Chapter 5: Copolymers, Microstructure, and Stereoregularity
	5.1. Introduction
	5.2. Copolymer Composition
		5.2.1. Rate Laws
		5.2.2. Composition versus Feedstock
	5.3. Reactivity Ratios
		5.3.1. Effects of r Values
		5.3.2. Relation of Reactivity Ratios to Chemical Structure
	5.4. Resonance and Reactivity
	5.5. A Closer Look at Microstructure
		5.5.1. Sequence Distributions
		5.5.2. Terminal and Penultimate Models
	5.6. Copolymer Composition and Microstructure: Experimental Aspects
		5.6.1. Evaluating Reactivity Ratios from Composition Data
		5.6.2. Spectroscopic Techniques
		5.6.3. Sequence Distribution: Experimental Determination
	5.7. Characterizing Stereoregularity
	5.8. A Statistical Description of Stereoregularity
	5.9. Assessing Stereoregularity by Nuclear Magnetic Resonance
	5.10. Ziegler–Natta Catalysts
	5.11. Single-Site Catalysts
	5.12. Chapter Summary
	Problems
	References
	Further Readings
Chapter 6: Polymer Conformations
	6.1. Conformations, Bond Rotation, and Polymer Size
	6.2. Average End-to-End Distance for Model Chains
		Case 6.2.1. The Freely Jointed Chain
		Case 6.2.2. The Freely Rotating Chain
		Case 6.2.3. Hindered Rotation Chain
	6.3. Characteristic Ratio and Statistical Segment Length
	6.4. Semiflexible Chains and the Persistence Length
		6.4.1. Persistence Length of Flexible Chains
		6.4.2. Worm-Like Chains
	6.5. Radius of Gyration
	6.6. Distributions for End-to-End Distance and Segment Density
		6.6.1. Distribution of the End-to-End Vector
		6.6.2. Distribution of the End-to-End Distance
		6.6.3. Distribution about the Center of Mass
	6.7. Spheres, Rods, Coils, and Chain Overlap
	6.8. Self-Avoiding Chains: A First Look
	6.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 7: Thermodynamics of Polymer Mixtures
	7.1. Review of Thermodynamic and Statistical Thermodynamic Concepts
	7.2. Regular Solution Theory
		7.2.1. Regular Solution Theory: Entropy of Mixing
		7.2.2. Regular Solution Theory: Enthalpy of Mixing
	7.3. Flory–Huggins Theory
		7.3.1. Flory–Huggins Theory: Entropy of Mixing by a Quick Route
		7.3.2. Flory–Huggins Theory: Entropy of Mixing by a Longer Route
		7.3.3. Flory–Huggins Theory: Enthalpy of Mixing
		7.3.4. Flory–Huggins Theory: Summary of Assumptions
	7.4. Osmotic Pressure
		7.4.1. Osmotic Pressure: General Case
		7.4.2. Osmotic Pressure: Flory–Huggins Theory
	7.5. Phase Behavior of Polymer Solutions
		7.5.1. Overview of the Phase Diagram
		7.5.2. Finding the Binodal
		7.5.3. Finding the Spinodal
		7.5.4. Finding the Critical Point
		7.5.5. Phase Diagram from Flory–Huggins Theory
	7.6. Flory–Huggins Theory for Binary Polymer Blends
	7.7. What’s in χ?
		7.7.1. χ from Regular Solution Theory
		7.7.2. χ from Experiment
		7.7.3. Further Approaches to χ
	7.8. Excluded Volume and Chains in a Good Solvent
	7.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 8: Light Scattering by Polymer Solutions
	8.1. Introduction: Light Waves
		Basic Concepts of Scattering
	8.2. Basic Concepts of Scattering
		8.2.1. Scattering from Randomly Placed Objects
		8.2.2. Scattering from a Perfect Crystal
		8.2.3. Origins of Incoherent and Coherent Scattering
		8.2.4. Bragg’s Law and the Scattering Vector
	8.3. Scattering by an Isolated Small Molecule
	8.4. Scattering from a Dilute Polymer Solution
	8.5. The Form Factor and the Zimm Equation
		8.5.1. Mathematical Expression for the Form Factor
		8.5.2. Form Factor for Isotropic Solutions
		8.5.3. Form Factor as qRg→0
		8.5.4. Zimm Equation
		8.5.5. Zimm Plot
	8.6. Scattering Regimes and Particular Form Factors
	8.7. Experimental Aspects of Light Scattering
		8.7.1. Instrumentation
		8.7.2. Calibration
		8.7.3. Samples and Solutions
		8.7.4. Refractive Index Increment
	8.8. Introduction to Small-Angle Neutron Scattering
		8.8.1. Basics of the SANS Process and SANS Instrumentation
		8.8.2. SANS from Polymer Blends
		Case 8.8.1. An Isotope Blend
		Case 8.8.2. A Non-interacting Binary Blend
		Case 8.8.3. A Binary Blend with Interactions
	8.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 9: Dynamics of Dilute Polymer Solutions
	9.1. Introduction: Friction and Viscosity
	9.2. Stokes’ Law and Einstein’s Law
		9.2.1. Viscous Forces on Rigid Spheres
		9.2.2. Suspension of Spheres
	9.3. Intrinsic Viscosity
		9.3.1. General Considerations
		9.3.2. Mark–Houwink Equation
		9.3.3. Relation between Coil Overlap Concentration, c*,
and Intrinsic Viscosity
	9.4. Measurement of Viscosity
		9.4.1. Poiseuille Equation and Capillary Viscometers
		9.4.2. Concentric Cylinder Viscometers
	9.5. Diffusion Coefficient and Friction Factor
		9.5.1. Tracer Diffusion and Hydrodynamic Radius
		9.5.2. Mutual Diffusion and Fick’s Laws
	9.6. Dynamic Light Scattering (DLS)
	9.7. Hydrodynamic Interactions and Draining
	9.8. Size Exclusion Chromatography (SEC)
		9.8.1. Basic Separation Process
		9.8.2. Separation Mechanism
		9.8.3. Two Calibration Strategies
		9.8.4. Size Exclusion Chromatography Detectors
	9.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 10: Networks, Gels, and Rubber Elasticity
	10.1. Formation of Networks by Random Cross-Linking
		10.1.1. Definitions
		10.1.2. Gel Point
	10.2. Polymerization with Multifunctional Monomers
		10.2.1. Calculation of the Branching Coefficient
		10.2.2. Gel Point
		10.2.3. Molecular-Weight Averages
	10.3. Elastic Deformation
	10.4. Thermodynamics of Elasticity
		10.4.1. Equation of State
		10.4.2. Ideal Elastomers
		10.4.3. Some Experiments on Real Rubbers
	10.5. Statistical Mechanical Theory of Rubber Elasticity: Ideal Case
		10.5.1. Force to Extend a Gaussian Chain
		10.5.2. Network of Gaussian Strands
		10.5.3. Modulus of the Affine Gaussian Network
	10.6. Further Developments in Rubber Elasticity
		10.6.1. Non-Gaussian Force Law
		10.6.2. Front Factor
		10.6.3. Network Defects
		10.6.4. Mooney-Rivlin Equation
	10.7. Swelling of Gels
		10.7.1. Modulus of a Swollen Rubber
		10.7.2. Swelling Equilibrium
	10.8. Chapter Summary
	Problems
	References
	Further Readings
Chapter 11: Linear Viscoelasticity
	11.1. Basic Concepts
		11.1.1. Stress and Strain
		11.1.2. Viscosity, Modulus, and Compliance
		11.1.3. Viscous and Elastic Responses
	11.2. Response of the Maxwell and Voigt Elements
		11.2.1. Transient Response: Stress Relaxation
		11.2.2. Transient Response: Creep
		11.2.3. Dynamic Response: Loss and Storage Moduli
		11.2.4. Dynamic Response: Complex Modulus and Complex Viscosity
	11.3. Boltzmann Superposition Principle
	11.4. Bead–Spring Model
		11.4.1. Ingredients of the Bead–Spring Model
		11.4.2. Predictions of the Bead–Spring Model
	11.5. Zimm Model for Dilute Solutions, Rouse Model for Unentangled Melts
	11.6. Phenomenology of Entanglement
		11.6.1. Rubbery Plateau
		11.6.2. Dependence of Me on Molecular Structure
	11.7. Reptation Model
		11.7.1. Reptation Model: Longest Relaxation Time and Diffusivity
		11.7.2. Reptation Model: Viscoelastic Properties
		11.7.3. Reptation Model: Additional Relaxation Processes
	11.8. Aspects of Experimental Rheometry
		11.8.1. Shear Sandwich and Cone and Plate Rheometers
		11.8.2. Further Comments about Rheometry
	11.9. Chapter Summary
	Problems
	References
	Further Readings
Chapter 12: Glass Transition
	12.1. Introduction
		12.1.1. Definition of a Glass
		12.1.2. Glass and Melting Transitions
	12.2. Thermodynamic Aspects of the Glass Transition
		12.2.1. First-Order and Second-Order Phase Transitions
		12.2.2. Kauzmann Temperature
		12.2.3. Theory of Gibbs and DiMarzio
	12.3. Locating the Glass Transition Temperature
		12.3.1. Dilatometry
		12.3.2. Calorimetry
		12.3.3. Dynamic Mechanical Analysis
	12.4. Free Volume Description of the Glass Transition
		12.4.1. Temperature Dependence of the Free Volume
		12.4.2. Free Volume Changes Inferred from the Viscosity
		12.4.3. Williams–Landel–Ferry Equation
	12.5. Time-Temperature Superposition
	12.6. Factors that Affect the Glass Transition Temperature
		12.6.1. Dependence on Chemical Structure
		12.6.2. Dependence on Molecular Weight
		12.6.3. Dependence on Composition
	12.7. Mechanical Properties of Glassy Polymers
		12.7.1. Basic Concepts
		12.7.2. Crazing, Yielding, and the Brittle-to-Ductile Transition
		12.7.3. Role of Chain Stiffness and Entanglements
	12.8. Chapter Summary
	Problems
	References
	Further Readings
Chapter 13: Crystalline Polymers
	13.1. Introduction and Overview
	13.2. Structure and Characterization of Unit Cells
		13.2.1. Classes of Crystals
		13.2.2. X-ray Diffraction
		13.2.3. Examples of Unit Cells
	13.3. Thermodynamics of Crystallization: Relation of Melting Temperature to Molecular Structure
	13.4. Structure and Melting of Lamellae
		13.4.1. Surface Contributions to Phase Transitions
		13.4.2. Dependence of Tm on Lamellar Thickness
		13.4.3. Dependence of Tm on Molecular Weight
		13.4.4. Experimental Characterization of Lamellar Structure
	13.5. Kinetics of Nucleation and Growth
		13.5.1. Primary Nucleation
		13.5.2. Crystal Growth
	13.6. Morphology of Semicrystalline Polymers
		13.6.1. Spherulites
		13.6.2. Nonspherulitic Morphologies
	13.7. Kinetics of Bulk Crystallization
		13.7.1. Avrami Equation
		13.7.2. Kinetics of Crystallization: Experimental Aspects
	13.8. Chapter Summary
	Problems
	References
	Further Readings
Appendix
Index




نظرات کاربران