ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Plastics Compounding and Polymer Processing: Fundamentals, Machines, Equipment, Application Technology

دانلود کتاب ترکیب پلاستیک و پردازش پلیمر: مبانی، ماشین آلات، تجهیزات، فناوری کاربردی

Plastics Compounding and Polymer Processing: Fundamentals, Machines, Equipment, Application Technology

مشخصات کتاب

Plastics Compounding and Polymer Processing: Fundamentals, Machines, Equipment, Application Technology

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1569908370, 9781569908372 
ناشر: Hanser Publications 
سال نشر: 2021 
تعداد صفحات: 878
[875] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 77 Mb 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Plastics Compounding and Polymer Processing: Fundamentals, Machines, Equipment, Application Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترکیب پلاستیک و پردازش پلیمر: مبانی، ماشین آلات، تجهیزات، فناوری کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ترکیب پلاستیک و پردازش پلیمر: مبانی، ماشین آلات، تجهیزات، فناوری کاربردی



تولید پلاستیک شامل مراحل اصلی فرآیند \"سنتز (واکنش)\"، \"آماده سازی/ترکیب\" در سازنده و ترکیب کننده مواد خام و \"فرآوری\" (شکل دادن به نیمه تمام یا نیمه تمام) است. محصولات نهایی).

در این کتاب راهنما، مرحله میانی مرکزی، آماده سازی و ترکیب، مورد بحث قرار گرفته است.

وظایف آماده سازی شامل حذف اجزاء، ترکیب مواد افزودنی و تغییر اندازه ذرات است. ترکیب کردن عبارت است از ترکیب مواد افزودنی در یک پلیمر یا پلاستیک.

اصول مهندسی فرآیند و تجهیزات و ماشین‌های خاص مورد استفاده شرح داده شده‌اند. نویسندگان متخصص دانش خود را از زمینه های تحقیق، تولید پلیمر، و تولید تجهیزات/ماشین با کاربرد در فناوری پلاستیک منتقل می کنند.


توضیحاتی درمورد کتاب به خارجی

Plastics production comprises the main process steps "synthesis (reaction)", "preparation/compounding" at the raw material manufacturer and compounder, and "processing" (shaping into semi-finished or finished products). 

In this handbook, the central middle step, preparation and compounding, is discussed. 

The preparation tasks include the removal of components, the incorporation of additives, and the change of particle size. Compounding is the incorporation of additives into a polymer or plastic.

The process engineering fundamentals and the specific equipment and machines used are described. The specialist authors impart their knowledge from the fields of research, polymer production, and equipment/machine production with applications in plastics technology.



فهرست مطالب

The Authors
Preface
Contents
PART A
Introduction to the Processing of Polymers
	1 Introduction
		1.1 Plastics and Their Importance
		1.2 Processing and Compounding
		1.3 Recycling of Plastics
		1.4 Guide to the Individual Chapters of this Book
	2 Polymer Processing – Process Technology of Polymer Production
		2.1 Introduction
		2.2 Polymer Processing during the Polymer Synthesis in the Primary Production
		2.3 Polymer Processing after the Polymer Production – Compounding
			2.3.1 Main Temperature Window when Compounding for Finish Mixture
			2.3.2 Mixing in the Extruder
			2.3.3 Temperature and Time Limits for Compounding
			2.3.4 Challenges when Compounding
			2.3.5 Energy Requirement when Compounding
			2.3.6 Range of Performance of Extruder
			2.3.7 Throughput and Performance Density
			2.3.8 Performance Density in the Melt Area
			2.3.9 Energy Balance and Product Discharge Temperature
			2.3.10 Static Mixers
			2.3.11 Mixing Performance, Mixing Quality, Cross Mixing, Longitudinal Mixing
				2.3.11.1 Mixing Performance
				2.3.11.2 Mixing Performance and Mixing Quality
				2.3.11.3 Cross and Longitudinal Mixing
				2.3.11.4 Residence Time Distribution
				2.3.11.5 Mean Residence Time
PART B
Processing in Polymer Production
	3 Devolatilizing Devices
		3.1 Fundamentals of Devolatilization
			3.1.1 Phase Equilibrium
			3.1.2 Macroscopic Mass and Energy Balance
			3.1.3 Quantities Influencing the Change in Concentration
			3.1.4 General Conclusions
		3.2 Polymer Production and Degassing Tasks
			3.2.1 General Challenges at the Degassing of Volatiles from Polymers
			3.2.2 Special Features at the Degassing of Polymers with High Content of Volatiles and Limitation of Finish Degassing
		3.3 Overview of Devices and Machines forCompounding with Polymer Degassing
			3.3.1 Introduction
			3.3.2 Devices with Rotating Components and Machines
		3.4 Apparatus-Based Polymer Evaporation
			3.4.1 Tube Evaporator
			3.4.2 Process and Devices for Finish Degassing for Very Low Residual Contents in the Polymer
			3.4.3 General Scheme of an Apparatus-Based Evaporation Stage
			3.4.4 Product Quality
		3.5 Degassing of Polymers in Purge Bins
			3.5.1 Introduction
			3.5.2 Process Requirements for Degassing of Solids
			3.5.3 Basics of Particle Degasssing
			3.5.4 Determination of Degassing Process Parameters
				3.5.4.1 Oven Tests
				3.5.4.2 Batch Trials
				3.5.4.3 Pilot Plant Tests
				3.5.4.4 Criteria for the Gas Flow Rate for Degassing
			3.5.5 Design Requirements for the Degassing Silo
			3.5.6 Heating of Bulk Solids
			3.5.7 Energy-Efficient Plant Concepts
			3.5.8 Comparable Applications
			3.5.9 Summary
PART C
Processing after Polymer Production –Compounding
	4 Requirements, Product Development, Additives, Sources of Faults
		4.1 Compounding Requirements from the Compounder's Perspective
			4.1.1 Introduction
			4.1.2 Economics
			4.1.3 Technical Requirements along the Process Chain
				4.1.3.1 Material Handling
				4.1.3.2 Raw Material Pre-Treatment
				4.1.3.3 Premixing
				4.1.3.4 Extruder and Wear
				4.1.3.5 Cooling and Pelletizing
				4.1.3.6 Packaging
			4.1.4 Quality Control
			4.1.5 Environmental Aspects
			4.1.6 Conclusions
		4.2 Product Development
			4.2.1 Introduction
			4.2.2 Types of Product Development
			4.2.3 Building Blocks of Product Development
				4.2.3.1 Equipment Technology
				4.2.3.2 Process Technology
				4.2.3.3 Formulation
			4.2.4 Ingredients
				4.2.4.1 Additives
				4.2.4.2 Fillers
				4.2.4.3 Pigments
			4.2.5 Innovation
			4.2.6 Quality Control
			4.2.7 Scale-up
		4.3 Additives for Polymers – From Polymer to Plastic
			4.3.1 Blends
				4.3.1.1 Definition of Blends
				4.3.1.2 Classification of Multi-Phase Systems
				4.3.1.2.1 Polymer Blends
				4.3.1.2.2 Dry Blends
			4.3.2 Additives
				4.3.2.1 Definition of Additives
				4.3.2.2 Effects and Mode of Operation of the Additives
					4.3.2.2.1 Plasticizers
					4.3.2.2.2 Stabilizers
			4.3.3 Fillers
				4.3.3.1 Definition of Fillers
				4.3.3.2 Classification and Properties of Fillers
				4.3.3.3 Aspect Ratio
		4.4 Practical Examples Regarding Sources of Fault/Avoidance of Faults during Compounding
			4.4.1 Black Specks
			4.4.2 Sources at Dosing and Mixing
				4.4.2.1 Demixing
				4.4.2.2 Dosing System
				4.4.2.3 Mixing of Polymer with Additives
			4.4.3 Drive-Measurement Technique
			4.4.4 Faults in Tests with Small Extruders for Scale-up Purposes
	5 Compounding with Co-Rotating Twin-Screw Extruders
		5.1 Introduction
			5.1.1 Advantages of the Co-Rotating Twin-Screw Extruder
			5.1.2 Disadvantages of the Co-Rotating Twin-Screw Extruder
			5.1.3 Range of Services and Power Density of Co-Rotating Twin-Screw Extruders
			5.1.4 Parameters in Dependence on the Diameter Ratio Da/Di
				5.1.4.1 Strength and Throughput as a Function of Da/Di
				5.1.4.2 Pressure and Power Characteristic as a Function of Da/Di
				5.1.4.3 Maximum Product Volume
				5.1.4.4 Inner Surface of the Housing to Maximum Product Space
				5.1.4.5 Outlook
			5.1.5 Special Types of Construction of the Co-Rotating Extruder
		5.2 Tasks and Design of the Processing Zones of a Compounding Extruder
			5.2.1 Melt Conveying Zone
			5.2.2 Solids Conveying Zone
			5.2.3 Plastification Zone
			5.2.4 Distributive and Dispersive Mixing Zone
			5.2.5 Devolatilization Zone
			5.2.6 Pressure Build-up Zone
			5.2.7 Complete Screw Configuration
			5.2.8 Specific Energy Input
			5.2.9 Residence Time Characteristics
		5.3 Process and Screw Concepts for Machines with High Throughputs
			5.3.1 Development to High Torques, Volumes, and Rotations
			5.3.2 Parameters and Process Limits of Co-Rotating Twin-Screw Kneaders
			5.3.3 Process Length and Screw Development
			5.3.4 Maximum Possible Screw Speed
			5.3.5 Torque-Limited Processes
			5.3.6 Volume-Limited Processes
			5.3.7 Quality-Limited Processes
			5.3.8 Process Concept for Economical Compounding
			5.3.9 Outlook
		5.4 Screw Designs for Highly Filled Polymers(and Dosing Strategies)
			5.4.1 Why Filler Compounds?
			5.4.2 Typical Applications
			5.4.3 Material-Specific Influencing Factors
				5.4.3.1 Influence of Filler
					5.4.3.1.1 Origin/Mining
					5.4.3.1.2 Particle Size and Particle Size Distribution
					5.4.3.1.3 Coating
					5.4.3.1.4 Moisture Content
				5.4.3.2 Polymer and Additives
			5.4.4 Process Technology
				5.4.4.1 Conveying Technology
				5.4.4.2 Dosing Equipment
				5.4.4.3 Downstream Equipment
				5.4.4.4 Barrel Setup of an Extruder for Highly Filled Compounds
				5.4.4.5 Screw Design
					5.4.4.5.1 Melting Zone
					5.4.4.5.2 Filler Addition and Wetting
					5.4.4.5.3 Dispersion Zone
					5.4.4.5.4 Vacuum and Discharge Zone
				5.4.4.6 Entire System
		5.5 Compounding of Natural Fiber Reinforced Plastics
			5.5.1 Pre-Knowledge for the Processing of Natural Fibers
			5.5.2 Design and Parameterization of the Process Unit of a Co-Rotating Twin-Screw Extruder
		5.6 Fundamentals of ThermoplasticFoam Extrusion by Means of ParallelTwin-Screw Extruders
			5.6.1 Definition and Characterization of Foams
			5.6.2 Process Steps for Foam Extrusion
				5.6.2.1 Provision of Thermoplastic Melts
				5.6.2.2 Addition and Admixing of the Propellant (Blowing Agent)
				5.6.2.3 Injecting the Blowing Agent and Conditioning of the Melt
				5.6.2.4 Discharge of the Melt through the Die
				5.6.2.5 Growth of Cells and Stabilization of the Foam Structure
			5.6.3 System Components for Foam Extrusion
		5.7 Screw Configurations
		5.8 Materials, Coatings, Wear Technology
			5.8.1 Requirements to the Components for Compounding
			5.8.2 Materials and Heat Treatment
				5.8.2.1 Tempering Steels and Nitriding Steels
				5.8.2.2 Hot-Work Steels
				5.8.2.3 Alloyed Cold-Work Steels
				5.8.2.4 High-Speed Steels
			5.8.3 Execution of Components of Twin-Screw Extruders
			5.8.4 Process of Surface Layer Hardening
				5.8.4.1 Wear Protection by Nitriding
				5.8.4.2 Avoidance of Adhesive Wear due to Nitriding
				5.8.4.3 Avoidance of Pitting Corrosion by Nitriding
				5.8.4.4 Special Process for Maintaining Corrosion Protection
			5.8.5 Wear Protection by Coatings
				5.8.5.1 Hard Chromium
				5.8.5.2 Chemical Nickel
				5.8.5.3 Thin Layers of Hard Material
					5.8.5.3.1 Physical Vapor Deposition
					5.8.5.3.2 Chemical Vapor Deposition
			5.8.6 Recommendations for Application
			5.8.7 Summary and Outlook
	6 Compounding and Polymer Processing with Different Extruder Types
		6.1 Extruder Types – Introduction
			6.1.1 Compounding and Processing with Different Extruder Types
			6.1.2 Single-Screw Extruders
			6.1.3 Gear Pumps
			6.1.4 Co-Rotating Twin-Screw Extruders
			6.1.5 Counter-Rotating Twin-Screw Extruders
			6.1.6 Multi-Screw Extruders: RingExtruders and Planetary Roller Extruders
			6.1.7 Non-Screw Extruders
			6.1.8 High-Viscosity Reactors
		6.2 Single-Screw Extruder
			6.2.1 Applications in Compounding
			6.2.2 Design and Function
			6.2.3 Plasticizing Extruder
			6.2.4 Melt Extruder
			6.2.5 Degassing Extruder
			6.2.6 Mixing Elements for Single-Screw Extruders
			6.2.7 Scale-up Methods
		6.3 The RingExtruder
			6.3.1 Mechanical Setup
			6.3.2 Principle of Movement and Distributive Mixing
			6.3.3 Dispersive Mixing
			6.3.4 Degassing Efficiency
			6.3.5 Heat Transfer – Surface/Volume Ratio
			6.3.6 Wear Protection
			6.3.7 Extruder Series and Scale-up
			6.3.8 Fields of Application
				6.3.8.1 PET Recycling
				6.3.8.2 Continuous Production of Rubber Compounds
		6.4 Counter-Rotating IntermeshingTwin Screws
			6.4.1 Understanding of Gelation of PVC as a Requirement for Understanding of Twin Screws
			6.4.2 Structure of a PVC Grain
			6.4.3 Scheme of PVC Processing
			6.4.4 Model of PVC Compounding and Processing
			6.4.5 Level of Gelation and Mechanical Properties
			6.4.6 Formulation Components
			6.4.7 Homogeneity of the Gelation Level
			6.4.8 Homogeneity in PVC Processing
			6.4.9 Influence of Temperature on Gelation Homogeneity
			6.4.10 Temperature inside the 8to0 Adapter
			6.4.11 Basics of Screw Design
				6.4.11.1 Zones of a Counter-Rotating Twin Screw
				6.4.11.2 Special Features of the Screw Design of Counter-Rotating Twin Screws
			6.4.12 Design and Wear
		6.5 Planetary Roller Extruder
			6.5.1 Introduction
			6.5.2 Mechanical Principle
			6.5.3 Construction
			6.5.4 Characteristics
			6.5.5 Construction Sizes and Designations
			6.5.6 Conveying and Working Principle
				6.5.6.1 Partially and Fully Filled Areas
			6.5.7 Planetary Spindle Configuration
				6.5.7.1 Types of Planetary Spindles
				6.5.7.2 Planetary Spindle Lengths
				6.5.7.3 Distribution of Planetary Spindles
			6.5.8 Intermediate Rings
			6.5.9 The Modular System
			6.5.10 Feeding of Solids
			6.5.11 Feeding of Liquids
			6.5.12 Degassing
			6.5.13 Sensor System
			6.5.14 Peripheral Devices
		6.6 Oscillating Screw Kneader or Continuous Kneader
			6.6.1 Introduction
			6.6.2 Historical Background
			6.6.3 Working Principle
			6.6.4 Shear Rate
			6.6.5 Residence Time and Residence Time Distribution
			6.6.6 Technical Design
				6.6.6.1 Modularity
				6.6.6.2 Liners
				6.6.6.3 Screw Elements
				6.6.6.4 Kneading Bolts and Teeth
				6.6.6.5 Temperature Control
				6.6.6.6 Pressure Build-up Systems
			6.6.7 Application Fields
				6.6.7.1 Cable Compounds
				6.6.7.2 Engineering and High-Performance Plastics
				6.6.7.3 PVC Applications (Granulating and Calendering)
				6.6.7.4 Thermoset Applications
				6.6.7.5 Powder Coatings and Toners
				6.6.7.6 Anode Masses for Aluminum Production
				6.6.7.7 Specialties
				6.6.7.8 Food Applications
		6.7 Farrel Pomini Continuous Mixers
			6.7.1 Introduction
			6.7.2 General Mechanical Features
				6.7.2.1 Mechanical Features: Mixer
				6.7.2.2 Mechanical Features: Extruder
			6.7.3 FCM Configuration
				6.7.3.1 Feed Section
				6.7.3.2 Mixing Section
				6.7.3.3 Apex Zone
				6.7.3.4 Rotor Orientation
			6.7.4 Principles of Operation
				6.7.4.1 Heating and Cooling
				6.7.4.2 Mixer Body Segments and Mixing Dams
			6.7.5 Process Flexibility
			6.7.6 Applications
			6.7.7 Energy Saving
			6.7.8 Conclusion
		6.8 Extruder Types – Comparison
			6.8.1 Questions to Be Asked Prior to a Comparison
			6.8.2 Costs, Operating Figures, Specific Energy
			6.8.3 Characteristic Process Properties of Different Extruder Types
			6.8.4 Descriptive Evaluation of Extruders with Current Throughputs and Sizes
		6.9 MRS (Multi-Rotations System)
			6.9.1 Mode of Operation
				6.9.1.1 Feeding and Plastification in the MRS
				6.9.1.2 The Degassing Drum – The Heart of the MRS Technology
				6.9.1.3 Conveying and Pumping
			6.9.2 Continuous Measure and Control of Process Parameters
				6.9.2.1 Importance of Acquisition and Control of the Process Parameters Melt Pressure, Temperature, and Viscosity
				6.9.2.2 Control by Means of Online Viscometer VIS
			6.9.3 Essential Process-Related Influencing Factors during PET Processing
				6.9.3.1 Drying and Extrusion
			6.9.4 Processing of Other Polymers
				6.9.4.1 Recycling of Polyolefins
				6.9.4.2 Monomer Removal
			6.9.4.3 Decontamination
			6.9.5 Energy Savings with the MRS System
			6.9.6 Results
	7 Processing of Polymer Melts with Other Devices and Machines
		7.1 High-Viscosity Reacto
			7.1.1 Introduction
			7.1.2 Single-Shaft High-Viscosity Reactors
			7.1.3 Twin-Shaft High-Viscosity Reactors
				7.1.3.1 Reacom
				7.1.3.2 Reasil
			7.1.4 Product Transport
			7.1.5 Energy Input
			7.1.6 Axial and Radial Mixing Behavior
			7.1.7 Devolatilization
			7.1.8 Apparatus Design and Scale-up
			7.1.9 Summary
		7.2 Compounding of Polymers by Means of Calender and Flat Film Lines
			7.2.1 History
			7.2.2 Continuous Feeding
			7.2.3 The Planetary Roller Extruder for Calender Feeding
			7.2.4 Comparison of Different Compounding Systems
			7.2.5 Modern Calender Lines
			7.2.6 Types of Pelletizing
			7.2.7 Roll Mill and Strainer
			7.2.8 Roll Mill
			7.2.9 Strainer
			7.2.10 Edge Trims
			7.2.11 Different Calender Types
			7.2.12 Special Designs
			7.2.13 Differences between Calenders and Calandrettes
			7.2.14 The Task of the Calender and Different Calender Rolls
			7.2.15 The Setup and Mode of Operation of a Calender
			7.2.16 Possibilities of Correction
			7.2.17 Temperature Distributions
			7.2.18 Comparison of the Temperature Distribution in the Edge Areas between a Conventional, Peripherally Bored Roll and a Coiled Roll
			7.2.19 Static and Thermal Comparison of Calender Rolls in Use Today
			7.2.20 Speeds and Sizes
			7.2.21 The Mini Impression Roller
			7.2.22 Thickness Measuring and Inspection Unit for Contamination
			7.2.23 Winder
			7.2.24 Sheet and Film Production
				7.2.24.1 Gear Pumps
				7.2.24.2 Flat Film Dies
					7.2.24.2.1 Die Construction Always Is a Compromise
					7.2.24.2.2 Application-Specific Die Equipment
					7.2.24.2.3 Multi-Layer Extrusion
			7.2.25 Chill Roll Line
			7.2.26 Flat Film Line
			7.2.27 Polishing Rolls
			7.2.28 Foam Sheets of 20 mm–200 mm
			7.2.29 Vacuum Nap Film Line According to the Film Casting Principle for Construction Nap Film
			7.2.30 TPU Film Line for Direct Embossing between Siliconized Fabric
			7.2.31 Film Stretching Lines
			7.2.32 Introduction to the Biax Process Using the Example of BOPP
				7.2.32.1 Raw Material Supply and Extrusion
				7.2.32.2 TDO (Transversal Direction Orienter)
		7.3 Mixing and Dispersion
			7.3.1 Fundamentals: Homogeneous and Dispersive Mixing
				7.3.1.1 Overview, Principles, and Experiments
					7.3.1.1.1 Homogeneous Mixing – Mixing in Laminar Flow
					7.3.1.1.2 Dispersive Mixing
					7.3.1.1.3 Determining the Mixing Quality
				7.3.1.2 Three-Dimensional Calculations of Mixing and Residence Time Behavior
				7.3.1.3 Summary
			7.3.2 Static Mixers
				7.3.2.1 Introduction, Advantages, and Disadvantages
				7.3.2.2 Construction Types
				7.3.2.3 Process Technology
					7.3.2.3.1 Pressure Loss and Mixer Evaluation
					7.3.2.3.2 Reduction in Layer Thickness Depending on the Mixing Length - Distributive Mixing
					7.3.2.3.3 Residence Time Distribution
					7.3.2.3.4 Power Input and Temperature
					7.3.2.3.5 Gas Dispersion
					7.3.2.3.6 Mixing-in of Additives
					7.3.2.3.7 Heat Transfer
					7.3.2.3.8 Scale-up of the Mixing Function
				7.3.2.4 Static Mixers with Internal Temperature Control
					7.3.2.4.1 SMR Heat Exchanger
					7.3.2.4.2 Compact Heat Exchanger with Temperature-Controlled X Installations
PART D
Further Important Components of a Processing Facility
	8 Bulk Material Technology in Polymer Processing
		8.1 Silo Design for Flow and Stability
			8.1.1 Silos Discharge Problems
				8.1.1.1 Arching
				8.1.1.2 Ratholing
				8.1.1.3 Erratic Flow
				8.1.1.4 Flushing
				8.1.1.5 Segregation
				8.1.1.6 Level Control
				8.1.1.7 Residence Distribution
			8.1.2 Flow Profiles in Silos
			8.1.3 Shear Tests to Determine the Flow Properties
			8.1.4 Silo Design for Flow
				8.1.4.1 Hopper Wall Inclination for Mass Flow
				8.1.4.2 Outlet Diameter to Avoid Arching in Mass Flow
				8.1.4.3 Outlet Diameter to Avoid Ratholing in Funnel Flow
				8.1.4.4 Influence of Time Consolidation
				8.1.4.5 Application of Discharge Devices and Discharge Aids
			8.1.5 Structural Aspects of Silo Design
				8.1.5.1 Pressures in Silos
				8.1.5.2 Pressure Peaks in Silos
				8.1.5.3 Asymmetric Flow Channels
		8.2 Blending Silos for Plastic Compounding and Processing
			8.2.1 Introduction
			8.2.2 Requirements for Blending Silos
			8.2.3 Survey on Blending Silo Designs
				8.2.3.1 Blending Silos with Mechanical Energy Input
				8.2.3.2 Blending Silos with Pneumatic Energy Input
				8.2.3.3 Gravity Flow Blending Silos with Internal Blend Hoppers
				8.2.3.4 Gravity Flow Blending Silos with Blending Pipes
				8.2.3.5 Multi-Chamber Blending Silos
			8.2.4 Selection Criteria
			8.2.5 Summary
		8.3 Feeding Technology
			8.3.1 Basics of Feeding Technology
			8.3.2 Different Feeding Technologies for Solids
			8.3.3 Loss-in-Weight Liquid Feeders
			8.3.4 Loss-in-Weight Feeder
			8.3.5 Requirements for the Weigh-Feeders
			8.3.6 Plant Implementation
			8.3.7 Refill
			8.3.8 Venting
			8.3.9 ATEX
			8.3.10 Accuracy & Consistency (Namur)
			8.3.11 Cleaning and Product Change
			8.3.12 Control and Interfaces
			8.3.13 Future Outlook
			8.3.14 Summary
		8.4 High-Intensive Mixing
			8.4.1 Introduction
			8.4.2 Introduction to Mixing of Solids
				8.4.2.1 Mixing Task
				8.4.2.2 Classification of Mixers
				8.4.2.3 Segregation
				8.4.2.4 Description of the State of Mixing by Statistical Means
			8.4.3 Applications for High-Speed Mixers
				8.4.3.1 PVC Processing
				8.4.3.2 Production of Wood-Plastic Compounds (WPC)
				8.4.3.3 Production of Compounds for Powder Injection Molding (PIM)
				8.4.3.4 Production of Compounds for Bonding Applications
			8.4.4 Mixers Operating in Batch Mode
				8.4.4.1 Fluid Mixers
				8.4.4.2 High-Speed Mixers
				8.4.4.3 Heating-Cooling Mixer Combination
				8.4.4.4 Container Mixer
			8.4.5 Mixers for Continuous Operation
			8.4.6 Summary and Outlook
		8.5 Pneumatic Conveying in the Polymer Industry
			8.5.1 Introduction
			8.5.2 Conveying Modes and Flow Characteristic
			8.5.3 Design of Pneumatic Conveying Systems
			8.5.4 Design and Operation of Pneumatic Conveying Systems
				8.5.4.1 Concept and Operation of a Dilute-Phase Conveying System
				8.5.4.2 Concept and Operation of Dense-Phase Conveying Systems
			8.5.5 Feeding of Solids into the Conveying Line
			8.5.6 Summary
	9 Gear Pumps for Compounding
		9.1 Introduction - Gear Pumps
		9.2 Mode of Operation of the Gear Pump
		9.3 Gear Pump for Compounding in the Main Flow
			9.3.1 Design of the Pump
				9.3.1.1 Housing and Covers
				9.3.1.2 Gear Wheels
				9.3.1.3 Friction Bearing
				9.3.1.4 Axial Shaft Seal
				9.3.1.5 Heating
			9.3.2 Influence of the Pumped Medium
				9.3.2.1 Viscosity
				9.3.2.2 Solids
			9.3.3 Control System
		9.4 Gear Pump for Additives
			9.4.1 Design of the Pump
				9.4.1.1 Housing and Covers
				9.4.1.2 Gear Wheels
				9.4.1.3 Friction Bearing
				9.4.1.4 Axial Shaft Seal
				9.4.1.5 Heating
			9.4.2 Influence of the Pumped Medium
				9.4.2.1 Viscosity
	10 Filters for (Highly) Viscous Polymer Melts
		10.1 Basic Principles of Polymer Filtration
			10.1.1 Possible Contamination of Polymer Melts
			10.1.2 Usable Filter Media
			10.1.3 Definition of Polymer Melt Filtration
		10.2 Filtration Systems
			10.2.1 Large-Area Filters
				10.2.1.1 Filter Candles
				10.2.1.2 Filter Discs
			10.2.2 Screen Changers
				10.2.2.1 Piston Screen Changers
				10.2.2.2 Rotary Screen Changers
			10.2.3 Modern Filtration Systems – Economic Considerations
		10.3 Design Procedure for Melt Filters
		10.4 The “Right” Filtration
	11 Pelletizing and Drying
		11.1 Overview of Pelletizing Processes
		11.2 Process Engineering Aspectsof Pelletizing
		11.3 Process Engineering Aspects of Drying
		11.4 Pelletizing and Drying in the PolymerProduction
			11.4.1 Typical Application Requirements
			11.4.2 Underwater Pelletizing Technology for Polyolefins
			11.4.3 Air-Cooled Pelletizing for PVC
			11.4.4 Underwater Strand Pelletizing
			11.4.5 Pellet Drying and Process Water Treatment in the Polymer Production
		11.5 Pelletizing and Drying in Compounding Processes (Filling, Reinforcing, Additivation, Blending)
			11.5.1 Typical Application Requirements
			11.5.2 Underwater Pelletizing and Drying
			11.5.3 Strand Dry Cut (Conventional Strand Pelletizing)
			11.5.4 Automatic Strand Dry Cut
			11.5.5 Special Processes for Special Applications
		11.6 Other Pelletizing and Drying Processes
			11.6.1 Dicers
			11.6.2 Water Ring Pelletizers
			11.6.3 Alternative Pelletizing Processes
	12 Measurement Technology
		12.1 Metrological Basics
		12.2 Pressure and Temperature Measurement Technology
			12.2.1 Temperature
			12.2.2 Pressure
		12.3 Rheological Metrology
			12.3.1 Laboratory Rheometers
			12.3.2 Process Rheometers
		12.4 Optical and Spectroscopic Methods
			12.4.1 Color Measurement
			12.4.2 Infrared Spectroscopy
			12.4.3 Microscopy and Image Analysis
			12.4.4 Optical Sorting System
		12.5 Application-Related Tests
		12.6 Filter Pressure Test
		12.7 Special Systems
			12.7.1 Ultrasonic Measurement Technology
			12.7.2 Model-Predictive Control
Index




نظرات کاربران