دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Vladimir Rozhansky
سری:
ISBN (شابک) : 303144485X, 9783031444852
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 374
[367]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Plasma Theory: An Advanced Guide for Graduate Students به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه پلاسما: یک راهنمای پیشرفته برای دانشجویان فارغ التحصیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Introduction Contents Chapter 1: Plasma Kinetics 1.1 Boltzmann Equation 1.2 Collision Operator for Coulomb Collisions 1.2.1 General Expression for a Flow in the Velocity Space Caused by Collisions 1.2.2 Deceleration and Diffusion of Test Particles Cloud in the Velocity Space 1.2.3 Momentum and Energy Loss of the Test Particles 1.2.4 Landau Collision Operator 1.3 Relativistic Collision Operator 1.4 Fokker-Planck Equation 1.5 Runaway Electrons in Fully Ionized Plasma 1.6 Distribution Function of Electrons in Slightly Ionized Plasma 1.6.1 Approximation 1.6.2 Distribution Function in the Electric Field 1.6.3 Impact of Electron-Electron Collisions 1.6.4 General Expression for 1.7 Transport Coefficients for Electrons in Slightly Ionized Plasma 1.8 Drift Kinetic Equation in a Stationary Electric and Magnetic Field 1.9 Gyrokinetic Equation 1.10 Pellet Ablation in a Tokamak Chapter 2: Transport Equations 2.1 Momentum Equations 2.2 Transport Coefficients in Fully Ionized Plasma. Method of Chapman and Enskog 2.3 Summary of the Results for the Fully Ionized Plasma 2.4 Transport Coefficients in Fully Ionized Plasma. Qualitative Considerations 2.4.1 Friction Caused by the Relative Mean Velocity and Thermal Force 2.4.2 Spitzer Conductivity 2.4.3 Heat Flux: Conductive and Convective Parts 2.4.4 Collisional Heat Production 2.4.5 Viscosity 2.5 Equation for Entropy 2.6 Viscosity in the BGK Approximation 2.7 Thermal Force for Impurities 2.8 First Ionization Potential Effect and Impurity Retention in a Tokamak Edge Chapter 3: Quasineutral Plasma and Sheath Structure 3.1 Quasineutrality Maintenance 3.2 Collisionless Sheath at the Material Surfaces 3.2.1 Electrons in a Capacitor with a Reflecting Electric Field 3.2.2 Particle and Energy Fluxes to the Material Surfaces 3.2.3 Current-Voltage Characteristics of the Sheath. Floating Potential 3.2.4 Sheath Structure. Bohm Criterion 3.3 Impact of Electron Emission. Double Sheath 3.4 Sheath in Magnetic Field 3.5 Thermoelectric Current Between Two Electrodes Chapter 4: Diffusion in Partially Ionized Unmagnetized Plasma 4.1 Ambipolar Diffusion 4.2 Examples of Solutions of the Ambipolar Diffusion Equation 4.2.1 Decay of Initial Perturbation in Infinite Plasma 4.2.2 Positive Column of Glow Discharge 4.2.3 Diffusive Decay 4.2.4 Diffusive Probe 4.3 Diffusion of Slightly Ionized Multispecies Plasma 4.4 Diffusion in the Ionosphere Chapter 5: Diffusion of Partially Ionized Magnetized Plasma 5.1 Diffusion and Mobility in a Magnetic Field 5.2 One-Dimensional Diffusion in Magnetized Plasma 5.2.1 Diffusion Across a Magnetic Field 5.2.2 1D Diffusion at an Arbitrary Angle with a Magnetic Field 5.3 Diffusion of Perturbation in Unbounded Plasma 5.4 Diffusion in Plasma Restricted by Dielectric Walls 5.5 Diffusion in a Cylinder with Conducting Walls 5.6 Diffusive Probe in Magnetic Field 5.7 Experiments in Laboratory Plasma Chapter 6: Partially Ionized Plasma with Current 6.1 Plasma with Net Current in the Absence of a Magnetic Field 6.1.1 Small Perturbations 6.1.2 Nonlinear Evolution 6.2 Magnetized Plasma with Current 6.2.1 One-Dimensional Evolution 6.2.2 Multidimensional Evolution of Small Perturbation in Unbounded Plasma 6.2.3 Effect of Conductivity Recovery in a Weak Magnetic Field 6.3 Plasma Clouds in the Ionosphere 6.3.1 Redistribution of Metal Ions in the Polar Ionosphere. Sporadic Layers 6.3.2 Active Experiments with Barium Clouds Chapter 7: Transport in Strongly Ionized Plasma Across a Magnetic Field 7.1 Classical Diffusion of Fully Ionized Plasma Across a Magnetic Field 7.2 Transport of Impurities in Fully Ionized Plasma Across a Magnetic Field 7.3 Partially Ionized Magnetized Plasma with an Inhomogeneous Neutral Component 7.4 Penetration of Neutral Particles into Hot Tokamak Plasma Chapter 8: Drift Waves and Turbulent Transport 8.1 Drift Waves in Inhomogeneous Plasma 8.2 Drift-Dissipative Instability 8.3 Universal Instability 8.3.1 Fluid Ions 8.3.2 Kinetic Ions 8.4 Instabilities Caused by the Temperature Gradient 8.5 Turbulent Transport Caused by Random Electric Fields 8.6 Effect of Magnetic Shear on Plasma Instabilities Chapter 9: Dynamics of Fully Ionized Plasma in the Absence of a Magnetic Field 9.1 Ion Acoustic Waves 9.2 Nonlinear Dynamics. Self-Similar Solutions 9.3 Simple Nonlinear Waves. Overturn 9.4 Nonlinear Ion Acoustic Waves with Dispersion 9.5 Plasma Expansion During Pellet Injection Chapter 10: Magnetohydrodynamics (MHD) 10.1 Magnetohydrodynamic Equations 10.2 Magnetic Field Frozen in and Skin Effect 10.3 MHD Waves 10.4 Nonlinear MHD Waves 10.5 Magnetosonic Waves with Dispersion 10.6 Alfven Masers Chapter 11: Dynamics of Plasma Blobs and Jets in a Magnetic Field 11.1 Plasma Motion Across Magnetic Field in Vacuum 11.2 Deceleration of the Plasma Jet by Ambient Plasma 11.3 Edge Localized Modes and Filaments Chapter 12: Plasma Equilibrium 12.1 On the Possibility of Equilibrium in the Absence of a Vacuum Magnetic Field 12.2 Equilibrium of a Pinch 12.3 Magnetic Flux Surface Functions 12.4 Grad-Shafranov Equation 12.5 Integral Equilibrium in a Tokamak 12.6 Plasma Equilibrium in a Tokamak with Circular Cross-Sections 12.7 Coordinates for Arbitrary Flux Surfaces 12.8 Force-Free Equilibrium and Pinch with Canonical Profiles 12.9 2D Modeling of the Tokamak Edge Chapter 13: Transport Phenomena in Tokamaks 13.1 Fluid Regime (Pfirsch-Schlueter Regime) 13.1.1 Qualitative Estimates 13.1.2 Heat Conductivity 13.1.3 Plasma Flows on the Flux Surface, Density, Temperature and Potential Perturbations 13.1.4 Particle Fluxes 13.2 Radial Electric Field, Poloidal and Toroidal Rotation 13.3 Neoclassical Transport in Collisionless Regimes 13.3.1 Particle Trajectories 13.3.2 Ware Drift 13.3.3 Estimation of Transport Coefficients in the Plateau Regime 13.3.4 Estimation of Transport Coefficients in the Banana Regime 13.4 Distribution Function in the Collisionless Regimes 13.4.1 Plateau Regime 13.4.2 Banana Regime 13.5 Particle and Heat Balance Equations 13.6 Transport Codes Chapter 14: Instabilities in Magnetized Plasma 14.1 Rayleigh-Taylor Instability in Fluids 14.2 Flute Instability 14.3 Dissipative Modifications of Flute Instability 14.3.1 RT Instability in Partially Ionized Plasma 14.3.2 Flute Instability in Plasma Contacting Metal Surfaces 14.3.3 Gravitational-Dissipative Flute Instability 14.4 Energy Principle 14.5 Kink Instability 14.6 Tearing Instability 14.7 Geodesic Acoustic Mode and Zonal Flows 14.8 Equatorial Plasma Bubbles Chapter 15: Magnetic Islands and Stochastic Magnetic Field 15.1 Magnetic Islands 15.2 Stochastic Instability and Magnetic Field Line Diffusion 15.3 Transport in Stochastic Magnetic Field 15.4 Resonant Magnetic Perturbations in Tokamak 15.5 Simulation of Resonant Magnetic Perturbations Effects with Codes and Examples of Experimental Results Chapter 16: Improved Confinement Regime (H-Mode) 16.1 Drift Shear and Transport Barriers 16.2 Transition from Low to High Confinement Regime (L-H Transition) 16.3 L-H Transition Power Threshold Bibiliography Index