دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Zundu Luo. Yidong Huang
سری: Springer Series in Materials Science 289
ISBN (شابک) : 9813296674, 9789813296671
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 468
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Physics of Solid-State Laser Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مواد لیزر حالت جامد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface About This Book Contents About the Authors 1 Energy Level of Free Ions 1.1 Energy Levels of the Single Electron in Atoms (Free Ions) 1.2 General Properties of Energy Level in Multi-electron of Free Ions 1.3 Energy Levels of Free Transition-Metal Ions 1.4 Energy Levels of Free Rare Earth Ions 1.5 Theory of Interactions in Rare Earth Ions References 2 Group Theory and Quantum Theory 2.1 Mathematical Description of the Symmetry 2.2 Basic Conception of the Group 2.3 Theory of Group Representations 2.4 Direct Product Group and Direct Product Representation 2.5 Sketches of the Group in Spectroscopy 2.5.1 Finite Group 2.5.2 Permutation Group 2.5.3 Continuous Groups 2.6 Point Group and Their Representation 2.7 Symmetry and Quantum Theory of the Ions in Solids 2.8 Full Rotation Group and Angular Momentum Theory 2.9 Irreducible Tensor Operators and the Calculation of Matrix Elements References 3 Rare Earth Ions in Materials 3.1 Crystal Field on the Active Ions 3.2 Energy Level Splitting of the Rare Earth Ions 3.3 Crystal Field Quantum Number 3.4 Group Chain Scheme Method in Crystal Field Analysis References 4 Theory of Radiative Transition 4.1 Interactions Between Active Ions and Radiation 4.2 Probability of Emission and Absorption Processes 4.3 Selection Rules for Radiative Transition 4.3.1 Selection Rules for Radiative Transition of Free Ions and Atoms 4.3.2 Selection Rules for Radiative Transition of Ions in Materials References 5 Spectroscopic Parameter and Their Calculation 5.1 Absorption Coefficient, Absorption (Emission) Cross-Section, and Oscillator Strength 5.2 Analysis of the Absorption Coefficients of Anisotropic Crystal 5.3 Judd–Ofelt Approximation and Related Parameter 5.4 Spectroscopic Parameter Calculation of Rare Earth Ion in Crystal 5.5 Hypersensitive Transitions References 6 Phonon and Spectral Line 6.1 Quantization of Lattice Vibration—Phonon 6.2 Phonon Emission and Absorption in the Optical Transition 6.3 Main Mechanisms of the Thermal Spectral Line Broadening and Shifting 6.4 The Contribution of Single-Phonon Absorption (Emission) to the Spectral Linewidth 6.5 The Contribution of Phonon Raman Scattering to the Spectral Linewidth 6.6 Calculation of the Thermal Shifting of Spectral Lines 6.7 Examples for the Calculation of Thermal Spectral Line Broadening and Shifting References 7 Energy Levels and Spectroscopic Properties of Transition Metal Ions 7.1 Energy Levels and Spectral Properties of 3d1 Electron System 7.2 Energy Levels and Spectral Properties of 3d2 Electron System 7.3 Energy Levels and Spectral Properties of 3d3 Electronic System 7.4 Relative Intensity Analysis of R Line in Ruby Polarized Absorption Spectrum 7.5 Estimation of Trivalent Chromium Ion Spectral Parameters in Solid-State Laser Materials References 8 Non-radiative Transition Inside Ions 8.1 Introduction of Non-radiative Transition Matrix Elements 8.2 Promoting Mode and Accepting Mode in Non-radiative Transition Process 8.3 Non-radiative Transition Probability for Weak Coupling Systems 8.4 Parallelism Between Non-radiative Transition Probability and Radiative Transition Probability 8.5 Temperature Dependence of Non-radiative Transition Probability in Weak Coupling Systems 8.5.1 Experimental 8.6 Non-radiative Transition in Strong Coupling Systems 8.7 Nonlinear Theory of Non-radiative Transition 8.8 Stimulated Non-radiative Transition References 9 Energy Transfer and Migration Between Ions 9.1 Theory of Resonant Energy Transfer 9.2 Phonon-Assisted Energy Transfer Between Ions 9.3 Statistical Theory of Energy Transfer Between Ions 9.4 Energy Migration Between Ions 9.5 Characteristics of Concentration Dependent Fluorescence Quenching for Self-activated Laser Crystals References 10 Laser and Physical Properties of Materials 10.1 Brief Introduction of Solid-State Laser Principle 10.2 Quality Factor of Solid-State Laser Materials 10.3 Relationship Between Laser Threshold and Chemical Composition of Host Materials 10.4 Thermo-Mechanical and Thermo-Optical Properties of Solid-State Laser Materials 10.5 Laser Damage and Nonlinear Optical Properties References 11 Nonlinear Optical Properties of Laser Crystals and Their Applications 11.1 Second-Order Nonlinear Optical Effect of Crystal 11.2 Relationship Between Fundamental and Second Harmonic Waves in SFD Laser Crystal 11.3 Nonlinear Optical Coupling Equation of SFD Laser 11.4 Self Sum-Frequency Mixing Effect in Nonlinear Laser Crystal 11.5 Stimulated Raman Scattering Effect of Laser Crystal References 12 Apparent Crystal Field Model of Laser Glass and Its Application 12.1 Structure and Spectral Characteristics of Glasses 12.2 Apparent Crystal Field Hamiltonian for Rare Earth Ions in Non-crystal Host 12.3 Crystal Field Level Analysis for Er3+ Ions in Three Typical Glasses References Appendix A Character Tables for Point-Symmetry Group Appendix B Correlation Table of Group–Subgroup Appendix C Multiplication Tables for Some Point Groups Appendix D Squared Reduced-Matrix Elements of Unit Operator for J → J′ Transition in Rare Earth Ions Appendix E 3jm Factors for Some Group Chains Appendix F Clebsch-Gordan Coefficients of the Cubic Point Group with Trigonal Bases Appendix G Integral Numerical Value Associated with the Thermal Effect of the Spectra Index